
Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

08-6464-SIS-ZCH66
MARCH 9, 2006

2.1 TM

Application Programmers
Interface for BMP Decoder

ABSTRACT:

Application Programmers Interface for BMP Decoder
KEYWORDS:

Multimedia codecs, Image, Bitmap
APPROVED:

Wang Zening

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 1

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Revision History

VERSION DATE AUTHOR CHANGE DESCRIPTION

1 0 S I

1 1 S U
f
t

1 1 S
1 3 Sameer

S
A
r

1 2 Sameer
S

A
f

.0 3-Mar-2004 hailesh R nitial Draft

.1 0-Mar-2004 hailesh R pdated for (software) scaling
eature capable of being
urned off or on

.2 5-Mar-2004 hailesh Changed scaling to enum

.3 0-Nov-2004 Rapate
hailesh R

dded support for new PCS
equirements

.4 0-Apr-2005 Rapate
hailesh R

dded description for RGB
ormats

2.0 06-Feb-2006 Lauren Post Draft version using new format

2.1 29-Mar-2006 Sanjeev Kumar Document review

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 2

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Table of Contents
Introduction ...4

1.1 Purpose ..4
1.2 Scope ...4
1.3 Audience Description ..4
1.4 References ...4

1.4.1 Standards ...4
1.4.2 References ...4
1.4.3 Freescale Multimedia References ...5

1.5 Definitions, Acronyms, and Abbreviations...5
1.6 Document Location ...5

2 API Description ...6
3 BMP Decoder – Data Structures..7

3.1 Basic Data Types...7
3.2 BMP_Decoder_Object ..7
3.3 BMP_Mem_Alloc_Info ..8
3.4 BMP_Decoder_Params ...9
3.5 BMP_Decoder_Info_Init...10

4 BMP Decoder - Interface description..12
4.1 Memory Query ..12
4.2 Initialization ..12
4.3 Decoding and POST-PROCESSING ..13
4.4 Suspension...13

5 Overview of API usage..15
Appendix A RGB Output Formats Supported ..17
Appendix B Suspension and Resumption Mechanism ..21
Appendix C Debug and Logging Support ..22

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 3

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Introduction

1.1 Purpose
This document gives the application programmer’s interface for the bitmap BMP Decoder. The
purpose of this document is to specify the functional interface of the BMP decoder.

1.2 Scope
This document describes only the functional interface of the BMP decoder. It does not describe the
internal design of the decoder. Specifically, it describes only those functions needed by a software
module to use the decoder.

The BMP decoder decodes BMP formats1 as defined in Windows SDK (version 3 onward), with
the following features

• The BMP decoder supports BMP files containing one image with 1, 4, 8 16 and 24 bits per

pixel
• Supports simple run length compression for 4 and 8 bits per pixel
• The output formats supported are RGB555, 16 bit RGB (RGB565), RGB666 and 24 bit RGB

(RGB888)

1.3 Audience Description
The reader is expected to have basic understanding of BMP decoding. The intended audience for
this document is the development community who wish to use the BMP decoder in their systems.

1.4 References
1.4.1 Standards

• Windows SDK (version 3 onward) – BMP Format Documentation

1.4.2 References
• Compressed Image File formats by John Miano, ACM Press/Addison Wesley Longman.

1 Over the years, there have been several different and incompatible versions of BMP format. In addition to
the supported features of BMP listed in this section, the following restrictions of the BMP decoder in the
scope of this project should clearly be understood:

• BMP formats in use since Windows 3 are supported - OS/2 format for BMP not supported
• 32 bits per pixel format (rare) not supported

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 4

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

1.4.3 Freescale Multimedia References
• BMP Decoder Application Programming Interface - bmp_dec_api.doc
• BMP Decoder Requirements Book - bmp_dec_reqb.doc
• BMP Decoder Test Plan - bmp_dec_test_plan.doc
• BMP Decoder Release notes - bmp_dec_release_notes.doc
• BMP Decoder Test Results – bmp_dec_test_results.doc
• BMP Decoder Performance Results - bmp_dec_perf.doc
• BMP Decoder Interface Header – bmp_interface.h
• BMP Decoder Application Code – test_bmp.c

1.5 Definitions, Acronyms, and Abbreviations
TERM/ACRONYM DEFINITION

API Application Programming Interface

ARM Advanced RISC Machine

BMP Bitmap

FSL Freescale

IEC International Electro-technical Commission

ISO International Organization for Standardization

OS Operating System

RGB Raw pixel data organized in the order of Red, green and blue
components. RGB888 denotes 8 bits per pixel each for R, G and
B components

RVDS ARM RealView Development Suite

TBD To Be Determined

UNIX Linux PC x/86 C-reference binaries

1.6 Document Location
docs/bmp_dec

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 5

http://compass.freescale.net/go/161852887

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

2 API Description
The external software interface to the BMP Decoder consists of the following functions:

 BMP_query_dec_mem
Memory query

BMP_decoder_init
Initialization

BMP_decode_row_pp
Decoding and postprocessing (i.e. palletization and rescaling)

BMP_get_new_data
API to be implemented by the application calling the BMO decoder, to enable the BMP
decoder to fetch new data.

BMP_seek_file
Seeks the specified number of bytes from the current position or from the start position.
This API needs to be implemented by the application calling the BMP decoder, to enable
the BMP decoder to reposition the stream pointer (which points to the input)

The BMP decoder is provided as a library that contains the relevant routines including
BMP_query_dec_mem, BMP_decoder_init, BMP_decode_row_pp. The application calling the
BMP decoder needs to implement the callback routine BMP_get_new_data and BMP_seek_file.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 6

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

3 BMP Decoder – Data Structures

3.1 Basic Data Types

typedef unsigned long BMP_UINT32;
typedef long BMP_INT32;
typedef unsigned short BMP_UINT16;
typedef short BMP_INT16;
typedef unsigned char BMP_UINT8;
typedef char BMP_INT8;

3.2 BMP_Decoder_Object
In order to call any BMP decode function, the application that calls the BMP decoder needs to
create a new instance of the decoder object. The calling application maintains a list of pointers
to all currently active instances of the object, and manages them. The caller should also ensure
that there is sufficient memory available to run the instance that is being created. All data structures
used by the BMP functions need to be allocated by the caller on a per instance basis, and hence are
part of BMP_Decoder_Object instance structure. Input data that is required for this particular
instance of the decoder should be filled into the instance structure by the calling function. After
completion of the intended functions, the caller needs to delete the instance and free all memory
associated with it.

typedef struct BMP_Decoder_Object {
 BMP_Mem_Alloc_Info mem_info;
 BMP_Decoder_Params dec_param;
 BMP_Decoder_Info_Init dec_info_init;
 BMP_UINT32 rows_decoded;
 BMP_INT32 num_byte_read_in_row;
 BMP_error_type (*BMP_get_new_data)

(BMP_UINT8 **new_buf_ptr, BMP_UINT32 *new_buf_len,
struct BMP_Decoder_Object *dec_object);

 BMP_error_type (*BMP_seek_file)
(struct BMP_Decoder_Object *dec_object, BMP_INT32
num_bytes, BMP_Seek_File_Position start_or_current);

 void *vptr;
} BMP_Decoder_Object;

Element Description
BMP_Mem_Alloc_Info mem_info Filled by decoder in BMP_query_dec_mem

function.
BMP_Decoder_Params dec_param Caller needs to fill in this structure

before calling the decoder functions
BMP_Decoder_Info_Init BMP decoder init fills this structure

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 7

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

dec_info_init up, which can be used by the caller
rows_decoded Rows decoded– BMP decoder operates on a

row by row basis
num_byte_read_in_row Number of bytes read in current row
(*BMP_get_new_data)(BMP_UINT8
**new_buf_ptr, BMP_UINT32
*new_buf_len, struct
BMP_Decoder_Object
*dec_object);

Pointer to the callback routine
BMP_get_new_data

(*BMP_seek_file)
(struct BMP_Decoder_Object
*dec_object, BMP_INT32
num_bytes,
BMP_Seek_File_Position
start_or_current)

Pointer to the callback routine
BMP_seek_file

Void *vptr Other codec specific structure elements
not needed by caller

3.3 BMP_Mem_Alloc_Info

BMP_Mem_Alloc_Info is filled by the decoder in BMP_query_dec_mem function, which
specifies the number of memory requests and each request has size, alignment, and type (Fast or
Slow) of the memory need to be allocated. After querying for memory, application has to allocate
the required memory and assign pointers for all requests.

typedef struct
 {
 BMP_INT32 num_reqs;
 BMP_Mem_Alloc_Info_Sub mem_info_sub[MAX_NUM_MEM_REQS2];
 } BMP_Mem_Alloc_Info;

Element Description
num_reqs Number of valid memory requests
BMP_Mem_Alloc_Info_Sub
mem_info_sub

Array of structure

typedef struct {

BMP_INT32 size; /* Size in bytes */
 BMP_Mem_type type; /*Memory type Fast or Slow */
 BMP_INT32 align; /* Alignment of memory in
 bytes */
 void *ptr; /* Pointer to the memory */
} BMP_Mem_Alloc_Info_Sub;

Element Description
Size Mem Size
BMP_Mem_type type Memory type – fast or slow
Align Alignment of mem in bytes

2 MAX_NUM_MEM_REQS defined in .h file

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 8

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Ptr Pointer to memory

typedef enum
{
 E_FAST_MEMORY,
 E_SLOW_MEMORY
}BMP_Mem_type;

3.4 BMP_Decoder_Params

BMP_Decoder_Params needs to be filled by the application calling the BMP decoder before it calls
the Decoder functions. The calling application needs to indicate the desired output format
(RGB555, RGB666, RGB565 or RGB888). In case the calling application needs the BMP decoder
to also rescale the decoded output, it needs to set the sw_scaling_set structure member to 1. In such
a case, the calling application also provides information on the width and height of output to be
displayed.3 It should be noted that it is the responsibility of the calling application to ensure that all
the structure members of BMP_Decoder_Params are initialized to the correct values.
typedef struct
{
 output_format outformat;
 scaling_mode scale_mode;
 BMP_UINT16 output_width;
 BMP_UINT16 output_height;
} BMP_Decoder_Params;

Element Description
output_format outformat Enum for output formats supported
scaling_mode scale_mode Enum for scaling mode
output_width Width of output to be displayed (if

sw_scaling_set is set to 1)
output_height Height of output to be displayed (if

sw_scaling_set is set to 1)

typedef enum {
 E_OUPUTFORMAT_RGB888,
 E_OUTPUTFORMAT_RGB565,
 E_OUTPUTFORMAT_RGB555,
 E_OUTPUTFORMAT_RGB666,
 E_LAST_OUTPUT_FORMAT
} output_format;

For more details on these formats refer to Appendix A

This enum for the output format indexes into an array of function pointers – the functions are
responsible for rendering the output in the required format.

typedef enum {

3 Note that only scaling down is supported – if the output dimensions configured are greater than the BMP
image size as it occurs in the header, the BMP image is left unscaled.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 9

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

 E_NO_SCALE, /* No software scaling */
 E_INT_SCALE_PRESERVE_AR, /* Software scaling using integer scaling
 factor preserving pixel aspect ratio */
 E_LAST_SCALE_MODE
} scaling_mode;

3.5 BMP_Decoder_Info_Init

BMP_Decoder_Info_Init is filled by the decoder whenever the application invoking the BMP
decoder calls the BMP decoder initialization function BMP_decoder_init.

The information that is available after the initialization includes the image width, image height, the
output width and height (which corresponds to the rendered output displayed), the number of bits
per pixel used by BMP (supported: 1, 4, 8, 16 or 24 bits per pixel), compression type (Run length
encoding RLE 4 or RLE 8, or RGB), compressed file size, number of components in BMP file and
rendered output.

typedef struct
{
 BMP_UINT16 image_width; /* Input Image width */
 BMP_UINT16 image_height; /* Input Image height */
 BMP_UINT16 output_width; /* width of rendered output

4*/
 BMP_UINT16 output_height; /* height of rendered

output */
 bit_count bit_cnt; /* Bits per pixel – 1, 4, 8,

16, or 24 */
 compression_type cmpr_type; /* RGB, RLE4, RLE8 etc */
 BMP_UINT32 file_size; /* BMP file size in bytes */
 BMP_UINT16 BMP_components; /* Number of components in

the BMP */
 BMP_UINT16 output_components;/* Number of components

 rendered output */
 } BMP_Decoder_Info_Init;

Element Description
image_width Input Image width
image_height Input Image height
output_height Height of output image to be rendered
output_width Width of output image to be rendered
bit_count bpp Bits per pixel – 1, 4, 8, 16, or 24
compression_type comp RGB, RLE4, RLE8 – type of compression
File_size BMP file size in bytes
BMP_components Number of components in the BMP
output_components Number of components rendered output

typedef enum {
 E_BIT_COUNT_1 = 1,
 E_BIT_COUNT_4 = 4,

4 The rendered ouput size may not exactly match the display size configured in BMP_Decoder_Params since
the decoded output is scaled down by an integral multiple with aspect ratio preserved, to yield the rendered
output.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 10

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

 E_BIT_COUNT_8 = 8,
 E_BIT_COUNT_16 = 16,
 E_BIT_COUNT_24 = 24
} bit_count;

typedef enum {
 E_RGB = 0,
 E_RLE8 = 1,
 E_RLE4 = 2
} compression_type ;

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 11

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

4 BMP Decoder - Interface description

4.1 Memory Query
The BMP decoder does not perform any dynamic memory allocation. However, the
decoder memory requirements may depend on the type BMP bitstream (due to image size,
mode etc.). The application has to allocate memory as required by the decoder. So the
application first needs to query for memory by calling the function BMP_query_dec_mem.
This function must be called before all other decoder functions are invoked. This function
parses the required decoder information from the bitstream and fills the memory
information structure array. The application will then allocate memory and gives the
memory pointers to the decoder by calling the initialization function, which is given in the
next section. During the memory query, this function calls BMP_get_new_data to provide
input bitstream required for the memory query. This routine needs to be called at the
beginning of every new file/stream.

Important Note: The application should provide the bitstream from the beginning of the BMP
stream when BMP_query_dec_mem() calls the BMP_get_new_data() function.

C prototype:
BMP_error_type BMP_query_dec_mem (BMP_Decoder_Object *);

Arguments:
Decoder Object pointer.

Return value:

• BMP_ERR_NO_ERROR - Memory query successful.
• Other codes - Error

4.2 Initialization
All initializations required for the decoder are done in BMP_decoder_init(). This function must be
called after BMP_query_dec_mem is called. The initialization routine calls BMP_get_new_data to
provide input bits required for initialization. The application need to allocate the memory needed by
the decoder and fill the pointers of theBMP_Mem_Alloc_Info structure before calling the function.
The initialization routine needs to be called at the beginning of every new file/stream.

C prototype:
BMP_error_type BMP_decoder_init (BMP_Decoder_Object *);

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 12

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Arguments:

Decoder Object pointer.

Return value:

BMP_ERR_NO_ERROR - Initialization successful.

Other codes - Initialization Error

4.3 Decoding and POST-PROCESSING
The main decoder function is BMP_decode_row_pp(). This function decodes the BMP bit stream
row by row to generate the image pixels in RGB format. The decoder should be initialized before
this function is called. During the process of decoding, the function BMP_get_new_data gets
called whenever the decoder runs out of input. The calling application needs to provide a new
buffer filled with input data when BMP_get_new_data is called. The decoder returns the used
up buffer to the calling application. The calling application can fill up fresh data in the
returned buffer and keep it ready for use in the next BMP_get_new_data call.

The output buffer is filled with RGB pixels of the required output format and intended size for
display.

The decoding and post processing are carried out row by row. If errors are encountered in the
bitstream, the decoder handles these errors internally.
C prototype:
BMP_error_type BMP_decode_row_pp (BMP_Decoder_Object *dec_obj,
 BMP_UINT8 *output_buf)

Arguments:
dec_obj Decoder Object pointer
output_buf Output buffer pointer

Return value:
BMP_ERR_NO_ERROR - indicates decoding was successful.
Others - indicates error

4.4 Suspension
There are two ways the application can suspend the BMP decoder. The first method is with the use
of BMP_decode_row_pp() after which control is returned to the calling application. The second
method is by the use of BMP_get_new_data().

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 13

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Suspension using the second method takes place as follows:

• A flag TEST_SUSPENSION is defined in the application code
• A static variable is declared in BMP_get_new_data() function and is incremented each time

the function is called.
• After a few calls to the function, get_new_data() returns the code BMP_ERR_SUSPEND.
• Library comes out of the decoding function with return code as BMP_ERR_SUSPEND.

Decoder also updates a state variable, which will tell the application how many bytes of
data have been read in the current row. This will help for the application to seek back that
many bytes of data so that the row can be started from the beginning when the data is ready

• The application sets the state of the decoder as suspended.
• When the data is ready, the application sets the input pointer to the start of the current row

and the decoding proceeds

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 14

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

5 Overview of API usage
• Query for memory using BMP_query_dec_mem(). BMP Decoder returns memory required
• Calling function (i.e. the application that uses the BMP decoder) allocates memory and fills

up BMP_Decoder_Object.mem_info.mem_info_sub[i].ptr
• Calling function fills up the decoder parameters.
• The calling function initializes the BMP decoder by calling BMP_decoder_init()
• The calling function sets the required output format to be displayed, say RGB565 and

allocates the output buffer.
• For each row, the calling function calls the BMP decoder, i.e. BMP_decode_row_pp that is

required to decode and postprocess the decoded output.

The BMP_decoder_init and BMP_decode_row_pp internally call BMP_get_new_data when they
run out of the input bits. The BMP_get_new_data function returns the used input buffer and accepts
the new input buffer.

/* This function is implemented by the application */

BMP_error_type BMP_get_new_data (BMP_UINT8 ** new_buf_ptr,

 BMP_UINT32 * new_buf_len,
 BMP_Decoder_Object *dec_object)

{
 BMP_UINT8 * ptr;

 /* Read *new_buf_ptr and free that memory */
 ptr = *new_buf_ptr;
 free(ptr);

 /* Obtain the input BMP stream */
 *new_buf_ptr = Obtained from some source known to application,
 corresponding to decoder object;
 *new_buf_len = Obtained from some source known to application,
 corresponding to decoder object;

 Return 0 to indicate that new buffer
 has been filled.
 OR
 Return 1 if the application

encountered an error in passing the buffer

}

The BMP_decoder_init and BMP_decode_row_pp also call BMP_seek_file when they want to
seek in the file from start or current position . Sample BMP_seek_file implementation can be
found below.

BMP_error_type BMP_seek_file(BMP_Decoder_Object *dec_object, BMP_INT32
num_bytes, BMP_Seek_File_Position start_or_current)
{
 if(start_or_current == BMP_SEEK_FILE_CURR_POSITION)

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 15

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

 {
 if(fseek(fp_input_image, num_bytes, SEEK_CUR) != 0)
 {
 return BMP_ERR_ERROR;
 }

 }
 else if (start_or_current == BMP_SEEK_FILE_START)
 {
 if(fseek(fp_input_image, num_bytes, SEEK_SET) != 0)
 {
 return BMP_ERR_ERROR;
 }
 }
 return BMP_ERR_NO_ERROR;
}

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 16

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Appendix A RGB Output Formats
Supported

1. RGB888 FORMAT

• Unwrapped format

In the RGB888 image data format, each pixel requires 3 bytes. The image data is organized as
follows.
Unwrapped RGB888 Image data format
 DATA (MSB -> LSB)
 R7 R6 R5 R4 R3 R2 R1 R0 G7G6 G5 G4 G3 G2 G1 G0 BB7 B6B B

The library provides data in the aforementioned unwrapped format.

• Wrapped format

In order to facilitate easy viewing of the raw RGB888 data, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB888 Image Fields

B5 B4 B3 B2 B1 B0

DATA (MSB -> LSB) HEADER R7 R6 R5 R4 R3 R2 R1 R0 G7G6 G5 G4 G3 G2 G1 G0 BB7 B6B B5 B4 B3 B2 B1 BB0

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pgm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 17

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

2. RGB565 FORMAT

• Unwrapped format

In the RGB565 image data format, each pixel requires 2 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 565 data would be as follows.
Unwrapped RGB565 Image data format
 DATA (MSB -> LSB)
 R7 R6 R5 R4 R3 G7G6 G5 G4 G3 G2 BB7 B6B BB5 B4B BB3

The library provides data in the aforementioned unwrapped format. Note that this data can be
organized in the little endian or big endian format, depending on the endianness of the target of
execution.

• Wrapped format

In order to be consistent with the wrapped format for RGB888, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB565 Image Fields
 HEADER DATA (MSB -> LSB)
 R7 R6 R5 R4 R3 G7G6 G5 G4 G3 G2 BB7 B6B BB5 B4 B3

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pgm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 18

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

3. RGB555 FORMAT

• Unwrapped format

In the RGB555 image data format, each pixel requires 2 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 555 data would be as follows
Unwrapped RGB555 Image data format

Among the 16 bits, the most significant bit is set to zero.

DATA (MSB -> LSB)
0 R7 R6 R5 R4 R3 G7G6 G5 G4 G3 BB7 B6B BB5 B4B B

The library provides data in the aforementioned unwrapped format. Note that this data can be
organized in the little endian or big endian format, depending on the endianness of the target of
execution.

• Wrapped format

In order to be consistent with the wrapped format for RGB888, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

B3

DATA (MSB -> LSB)

Wrapped RGB555 Image Fields
 HEADER 0 R7 R6 R5 R4 R3 G7G6 G5 G4 G3 BB7 B6B BB5 B4B B3

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pgm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 19

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

4. RGB666 FORMAT

• Unwrapped format

In the RGB666 image data format, each pixel requires 3 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 666 data would be as follows
Unwrapped RGB666 Image data format
 DATA (MSB -> LSB)
 R7 R6 R5 R4 R3 R2 0 0 G7 G6 G5 G4 G3 G2 0 0 B7 BB6 B5B BB4 B3B B2 0 0

Within each byte, the two least significant bits are set to zero. This choice of padding zeros towards
the LSB lends itself to easy viewing of the rendered RGB666 data.

The library provides data in the aforementioned unwrapped format.

• Wrapped format

In order to facilitate easy viewing of the raw RGB666 data, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB555 Image Fields

 HEADER DATA (MSB -> LSB)
 R7 R6 R5 R4 R3 R2 0 0 G7 G6 G5 G4 G3 G2 0 0 B7 BB6 B5 B4 B3 B2 0 0

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pgm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 20

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Appendix B Suspension and Resumption
Mechanism

To test the suspension mechanism, two compile time flags ENABLE_SUSPENSION and
TEST_SUSPENSION have been provided.

ENABLE_SUSPENSION – This flag is defined in the file library/include/debug.h. It is used to
enable/disable the suspension-resumption mechanism in the library.

TEST_SUSPENSION – This flag is defined in the file
/ARM11/src/image/bmp_dec/test/c_source/test_bmp.c. When this flag is set, the sample application
provided (test_bmp.c) enables the code that specifically tests the suspension-resumption feature
provided by the library. A prerequisite for TEST_SUSPENSION to be set is that the
ENABLE_SUSPENSION needs to be set.

Note that by default (as in the sample library provided), both flags have been disabled. The user can
set these as per need5.

To simulate this suspension mechanism following concept is implemented in the application code.

1. A static variable is declared in BMP_get_new_data() function and is incremented each time the

function is called.
2. After four calls to the function, BMP_get_new_data() returns the code BMP_ERR_SUSPEND.
3. Library comes out of the decoding function with return code as BMP_ERR_SUSPEND.

Decoder also updates a state variable (bmp_dec_obj. bytes_read_in_a_row), which indicates to
the application how many bytes of data have been read in the current row. This application
needs to use this variable to seek back that many bytes of data so that the row can be started
from the beginning when the data is ready

4. The application sets the state of the decoder as suspended.
5. When the data is ready, the application sets the input pointer to the start of the current row and

the decoding proceeds.

The output generated was found to be bit matching with the reference output.

5 Specifically, the libraries (.a files) present in the folder /ARM11/src/image/bmp_dec/library have
been built with ENABLE_SUSPENSION flag disabled. So, to test the suspension mechanism
library must be rebuilt with the procedure mentioned earlier with ENABLE_SUSPENSION flag
enabled. The executable may then be generated by enabling the flag TEST_SUSPENSION in
test_bmp.c file.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 21

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

Appendix C Debug and Logging Support
To test the debug and log support, the calling application needs to enable/disable certain compile
time flags in the debug.h file provided in library/include/ directory. This header when used with
decoder library outputs all the possible messages and data in the log file

Following is the list of the compile time flags.

o DEBUG_LEVEL_0
o DEBUG_LEVEL_1
o ENTRY_EXIT
o DECODER_STATE
o OTHER_INFO
o READ_HDR_DATA_IN_INIT
o HEADER_DATA
o COLOR_TABLE
o RGB_BIT_MASKS
o ROW_NUMBER

BMP decoder uses two levels of debug flags DEBUG_LEVEL_0 and DEBUG_LEVEL_1.Other
flags are nested in these 2 levels and are enabled/ disabled depending upon the contents to be
logged. Sample debug.h file is provided below .The comments following the definition of the flags
give detailed information about them.

/*Flag to enable suspension code in the library*/
//#define ENABLE_SUSPENSION

//4 bit representing the various components
//0x1 means level 0 (Function Entry-Exit/General Info)
//0x2 means level 1 (input stream data)
//0x3 means 0 & 1 (input stream data + Fn Entry exit/General Info)

#define debug_level 0x0
/*On enabling debug level 0 we get messages regarding
 a.Function Entry Exit
 b.State of the decoder
*/
#define DEBUG_LEVEL_0 ((debug_level >> 0) & 0x1)

/*On enabling debug level 1 we get data in the
 input BMP stream
*/
#define DEBUG_LEVEL_1 ((debug_level >> 1) & 0x1)
/*Nested flags in debug levels*/

#if DEBUG_LEVEL_0

 #define ENTRY_EXIT 1 /*Get function entry and exit point messages*/
 #define DECODER_STATE 1 /*Get info regarding the state of decoder.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 22

Application Programmers Interface for BMP Decoder 08-6464-SIS-ZCH66 2.1

 For e.g. Querying for Mem
Req,Initializing etc*/
 #define OTHER_INFO 1 /* Get the encoding mode info*/
 #define READ_HDR_DATA_IN_INIT 1/*If we want to read header data in init
once again*/
#endif

#if DEBUG_LEVEL_1
 #define HEADER_DATA 1/*Get global header data*/
 #define COLOR_TABLE 1/*Get global color table*/

#define RGB_BIT_MASKS 1 /*Get bit masks.This applies for 16
bit BMP*/
 #define ROW_NUMBER 1 /*"Get the decoding row number*/
#endif

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary • 23

	Introduction
	1.1 Purpose
	Scope
	1.3 Audience Description
	References
	1.4.1 Standards
	1.4.2 References
	1.4.3 Freescale Multimedia References

	1.5 Definitions, Acronyms, and Abbreviations
	Document Location
	2 API Description
	3 BMP Decoder – Data Structures
	3.1 Basic Data Types
	3.2 BMP_Decoder_Object
	3.3 BMP_Mem_Alloc_Info
	3.4 BMP_Decoder_Params
	3.5 BMP_Decoder_Info_Init

	4 BMP Decoder - Interface description
	4.1 Memory Query
	4.2 Initialization
	4.3 Decoding and POST-PROCESSING
	4.4 Suspension

	5 Overview of API usage

