Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

R
08-6465-SIS-ZCH66

Z “freescale VARCH 9. 2005

semiconductor
2.1

Application Programmers
Interface for GIF Decoder

ABSTRACT:

Application Programmers Interface for GIF Decoder
KEYWORDS:

Multimedia codecs, Image, GIF
APPROVED:

Wang Zening

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 1

Application Programmers Interface for GIF Decoder

Revision History

VERSION

0.1
1.0

1.1

1.2

1.3

14
2.0
21

DATE

24-Jun-2004
11-Nov-2004

29-Dec--2004

04-Apr-2005

20-Jan-2006

25-Jan-2006
06-Feb-2006
19-Nov-08

© Freescale Semiconductor, Inc. 2005

AUTHOR

Shailesh R

Sameer Rapate,
Shailesh R

Sameer Rapate
Shailesh R

Sameer Rapate
Shailesh R

Atul Duggal

Kunal Goel
Lauren Post

Eagle Zhou

08-6465-SIS-ZCH66 2.01

CHANGE DESCRIPTION

Created and reviewed at MIEL

Updated with new API for animated
GIF

Updated for Release 1.0

Added description for RGB formats

Edited variable names for output
formats and scaling modes.

Updated with review comments
Using new format

Add BGR output format and api
version

Freescale Confidential Proprietary e 2

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Table of Contents

a1 d oo [0 Tox o] o USROS 5
11 PUIDOSE ...ttt 5
O oo oL TR P PP UPUPRURN 5
IS T AW o[1= o (ot I L= Yo] o] £ o] o RSSO 5
1.4 RETEIBNCES ...ttt sttt st e et e et e e be e sbe e e aeeeae e beesbeesbeesaeesareanre s 5
O R L 1= £ ot TSRS 5
1.4.2 Freescale Multimedia RETEIENCEScccviiiiiiii e 5
1.5 Definitions, Acronyms, and AbBreviations..........c.cccovveiiiiiieiie s, 6
1.6 DOCUMENT LOCALION ...ttt sttt st e e ente e e neenreenes 6
P AN e T 1= Tox] o (] o USRS 7
2.1 Frame by Frame DECOUINGcueiiieeieie ettt see st neeseeeneas 7
3 GIF DeCcoder — Data STFUCTUFEScviiuiiieeeieeieeie sttt ste et seeseesaeeneeseeeneas 8
TR = T T ol D - - I/ o= SR 8
3.2 GIF_DECODER_OBUIECT ...cctiiiieiiiieieieiesie ettt sttt e ssesne s s nnenes 8
3.3 GIF_MEM_ALLOC_INFO ..ottt 9
34 GIF_DECODER _PARAMS ..ottt sttt sttt a e se e stenne e e 10
35 GIF_DECODER_INFO _INIT .ottt 11
4 GIF DeCoder - INTEITACE.......ooeee ettt s ee e 14
4.1 Y 1= g0 Y@ 11T o SRR 14
4.2 INTEATIZALION ... bbb 15
B B =T ot o [o SRRSO 16
N Y =T €] o] BTSRRI 16
4.5 Function implemented by appliCationccccoviiiiiiieic i 17
A8 SUSPENSION. ...tttk b bbbttt h bbb bbbttt b 17
4.7 OVErVIEW OF AP USAJEeeoeiiieiiieiieeiee ettt sttt seeste s seeeneas 18
Appendix A RGB/BGR output formats SUPPOIted..........cccovcviiiiiiieie e 19
A-1 RGBBB8 FORMAT ...ttt sttt ne e et ne bt st nne s 19
A-1-1 Unwrapped FOrMaL........cooi i 19
A-1-2 WIrapPEd FOMMAL......ccuiiiiieiiieie et 19
A-2 RGBB565 FORMAT ..ottt et ettt sttt neeneesenbennenaenne s 20
A-2-1 UNWrapped FOIMAL..........oooviiiee et e e nes 20
A-2-2 WIapPEA FOMMAL......ccviieiiiieieei e 20
A-3 RGBB555 FORMAT ..ottt ettt ettt e st neasentenne st nne s 21
A-3-1 UnNWrapped FOIMAL............ooiiiiieeece et ee 21
A-3-2 Wrapped fOMMEL.........couoiiiieii et re s 21
A-4 RGBB66 FORMAT ..ottt ettt sttt a e ne b sre st nn e 22
A-4-1 UNWrapped FOIMAL..........c.ooiiieeecse et 22
A-4-2 Wrapped fOMMEL.........coviiiiiiiiie et re e 22
A5 BGR FORMAT ..ottt bbbt e et e saeseebente s re st nr e 22

Appendix B Suspension and Resumption MechaniSmcccocvverireniieieinsese e 23

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 3

Application Programmers Interface for GIF Decoder

Appendix C Debug and Log Support

© Freescale Semiconductor, Inc. 2005

08-6465-SIS-ZCH66 2.01

Freescale Confidential Proprietary o 4

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Introduction

1.1 Purpose

This document gives the application programmer’s interface for the GIF Decoder. The purpose of
this document is to specify the functional interface of the GIF decoder.

1.2 Scope

This document describes only the functional interface of the GIF decoder. It does not describe the
internal design of the decoder. Specifically, it describes only those functions needed by a software
module to use the decoder.

The GIF decoder decodes GIF formats for image storage, with the following features:

o The GIF decoder supports GIF files containing more than one image with 1 to 8 bits per
pixel (GIF 87a and 89a)

Supports LZW compression method to compress image data.

Supports interlacing in the image data

Supports transparency in the images

Supports animation of images

The output formats supported are 24 bit RGB (RGB888), 16 bit RGB565, 15 bit RGB555,
18 bit RGB666 and corresponding BGR format.

1.3 Audience Description

The reader is expected to have basic understanding of GIF decoding. The intended audience for
this document is the development community who wish to use the GIF decoder in their systems.

1.4 References

1.4.1 References
o Compressed Image File formats by John Miano, ACM Press/Addison Wesley Longman.

1.4.2 Freescale Multimedia References

GIF Decoder Application Programming Interface - gif_dec_api.doc
GIF Decoder Requirements Book - gif_dec_regb.doc

GIF Decoder Test Plan - gif_dec_test_plan.doc

GIF Decoder Release notes - gif_dec_release_notes.doc

GIF Decoder Test Results — gif_dec_test_results.doc

GIF Decoder Performance Results — gif_dec_perf_results.doc

GIF Decoder Interface Header — gif_def_interface.h

GIF Decoder Application Code — gif_test.c

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary 5

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

1.5 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

API Application Programming Interface

ARM Advanced RISC Machine

BMP Bitmap

FSL Freescale

IEC International Electro-technical Commission

ISO International Organization for Standardization

oS Operating System

RGB Raw pixel data organized in the order of Red, green and blue

components. RGB888 denotes 8 bits per pixel each for R, G and
B components

BGR Raw pixel data organized in the order of Blue, green and red
components. BGR888 denotes 8 bits per pixel each for B, G and
R components

RVDS ARM RealView Development Suite
TBD To Be Determined
UNIX Linux PC x/86 C-reference binaries

1.6 Document Location

docs/gif _dec

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 6

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

2 API Description

The external software interface to the GIF Decoder consists of the following functions:

GIF_query_dec_mem : Memory query

GIF_decoder _init : Initialization
GIF_query_dec_mem_frame Memory query for a frame
GIF_decoder_init_frame : Initialization for a frame
GIF_decode : Decoding and post processing

The GIF decoder is provided as a library that contains the relevant routines including
GIF_query_dec_mem, GIF_query_dec_mem_frame, GIF_decoder_init, GIF_decoder_init_frame
and GIF_decode.

Function for reading the data from input stream needs to be implemented by the calling application.
The GIF decoder API uses function pointers to invoke this function.

GIF_get new_data :
Function pointer to the function that reads data from the input stream (the function needs
to be implemented by calling application)

2.1 Frame by Frame Decoding

In the GIF file format, the file header includes a "screen size" expressed in pixels. Each frame
within the file has a “frame size” which is the actual data area of the frame, plus an x,y offset that
allows the frame to be positioned within the screen area defined

by the file header.

For a multi-frame (animated) GIF, the decoder library would parse the GIF global data, provide the
necessary information to the application. The application needs to then allocate memory for each
frame, initialize the GIF decoder with frame information by calling GIF_decoder_init_frame(),
allocate the output buffer for each frame. For each frame, the calling function calls needs to call the
GIF_decode().After decoding of each frame the output buffer contains decoded data of that frame.
The application is expected to maintain a screen area (buffer) equal to the screen size declared in
the header and inserts the successive frames at the locations indicated (by the decoder library)
within this area.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 7

Application Programmers Interface for GIF Decoder

08-6465-SIS-ZCH66 2.01

3 GIF Decoder — Data Structures

3.1 Basic Data Types

typedef int GIF_INT32;
typedef unsigned int GIF_UINT32;
typedef char GIF_INTS8;
typedef unsigned char GIF_UINTS;
typedef short GIF_INT16;
typedef unsigned short GIF_UINT16;

3.2 GIF_ DECODER_OBJECT

In order to call any GIF decode function, the application that calls the GIF decoder needs to create a
new instance of the decoder object. The calling application maintains a list of pointers to all
currently active instances of the object, and manages them. The caller should also ensure that there
is sufficient memory available to run the instance that is being created. All data structures used by
the GIF functions need to be allocated by the caller on a per instance basis, and hence are part of
GIF Decoder Object instance structure. Input data that is required for this particular instance of the
decoder should be filled into the instance structure by the calling function. After completion of the
intended functions, the caller needs to delete the instance and free all memory associated with it.

typedef struct

{

GIF_Mem_Alloc_Info
GIF_Decoder_Params
GIF_Decoder_Info_Init
GIF_Decoder_Info Dec

mem_info;
dec_param;
dec_info_init;
dec_info_dec;

GIFD_RET TYPE (*GIF_get_new_data)(GIF_UINT8**,GIF_UINT32 *,struct

GIF_Decoder_Object *);
void

GIF_INT32

GIF_INT32

} GIF _Decoder_Object;

*vptr;
number_of frames;
bytes read_in_a_ frame;

Element

Description

GIF Mem Alloc Info mem info Filled by decoder in

GIF_query dec_mem
function

GIF Decoder Params dec_ param Caller needs to fill

this structure before
calling the decoder
functions

GIF Decoder Info Init dec_info init GIF decoder init fills

this structure up, which
can be used by the

© Freescale Semiconductor, Inc. 2005

Freescale Confidential Proprietary o 8

Application Programmers Interface for GIF Decoder

08-6465-SIS-ZCH66 2.01

caller

GIFD_RET_TYPE

(*GIF_get_new_data) (GIF_UINT8**,GIF_UINT32
* ,struct GIF _Decoder Object *);

Function pointer to the
function to read new
data

void *vptr

Codec specific structure
elements not needed by

caller
number of frames Count of the number of
frames
bytes read in a frame Number of bytes read in
B - a frame

3.3GIF_MEM_ALLOC_INFO

GIF_Mem_Alloc_Info is filled by the decoder in GIF_query_dec_mem function, which specifies
the number of memory requests and each request has size, alignment, and type (Fast or Slow) of the
memory need to be allocated. After querying for memory, application has to allocate the required
memory and assign pointers for all requests.

typedef struct

GIF INT32
GIF Mem Alloc Info Sub
}JGIF Mem Alloc Info;

num_regs;

mem_info

sub[MAX_NUM_MEM_REQS] ;

Element

Description

num regs

Number of valid memory requests

GIF Mem Alloc_ Info Sub
mem_info sub[MAX_NUM_MEM_REQS]

ptr.

Pointer to structure containing
memory size,

type, alignment and

MAX_NUM_MEM_REQS

Currently 10

typedef struct

GIF INT32 size;
GIF Mem type type;
GIF INT32 align;
void *ptr;

}JGIF Mem Alloc Info Sub;

/*
/*
/*
/*

Size in bytes */

Memory type Fast or Slow */
Alignment of memory in bytes */
Pointer to the memory */

Element Description
Size Memory size
GIF Mem type type Memory type -fast or slow
Align Alignment of memory in bytes
void *ptr Pointer to memory
typedef enum

E_FAST MEMORY,
E_SLOW MEMORY
}GIF Mem type;

© Freescale Semiconductor, Inc. 2005

Freescale Confidential Proprietary e 9

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

3.4 GIF_DECODER_PARAMS

GIF_Decoder_Params needs to be filled by the application calling the GIF decoder before it calls
the Decoder functions. The calling application needs to indicate the desired output format. In case
the calling application needs the GIF decoder to also rescale the decoded output, it needs to set the
sw_scaling_set structure member to 1. In such a case, the calling application also provides
information on the width and height of output to be displayed. It should be noted that it is the
responsibility of the calling application to ensure that all the structure members of
GIF_Decoder_Params are initialized to the correct values.

If the scaling feature is turned on, the calling application provides the desired width and height that
the decoded image (specifically the width and height of ‘logical screen’ as defined by the GIF spec)
must be scaled down to. The scaling factor will be an integer and the aspect ratio of the image (i.e.
the “logical screen’ as defined by the GIF spec) will be preserved.

typedef struct

gif output format outformat;

gif scaling mode scale mode;

GIF UINTI1é6 output_width;

GIF UINT16 output height;
} GIF Decoder Params;

Element Description

gif output format outformat Enum for output formats supported
gif scaling mode scale mode Enum for scaling mode
Output width Width of output to be displayed
Output height Height of output to be displayed

typedef enum

E GIF OUTPUTFORMAT RGBS8S,
E_GIF OUTPUTFORMAT RGB565,

E GIF OUTPUTFORMAT RGB555,
E_GIF OUTPUTFORMAT RGB666,

E GIF OUTPUTFORMAT BGRSSS,
E GIF OUTPUTFORMAT BGR565,
E_GIF OUTPUTFORMAT BGR555,
E_GIF OUTPUTFORMAT BGR666,

E GIF LAST OUTPUT FORMAT
}gif output format;

For more details on these formats refer to Appendix B [Error! Reference source not found.]

This enum for the output format indexes into an array of function pointers — the functions are
responsible for rendering the output in the required format.

typedef enum
E GIF NO SCALE, /* No software scaling */

E _GIF INT SCALE PRESERVE AR, /* Software scaling using
integer scaling factor

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 10

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

preserving pixel aspect ratio
*/
E_GIF LAST SCALE_MODE
} gif scaling mode;

3.5GIF_DECODER_INFO_INIT

GIF_Decoder_Info_Init is filled by the decoder whenever the application invoking the GIF decoder
calls the GIF decoder initialization function GIF_decoder _init.

The information that is available after the initialization includes the width, height, number of bits
per pixel (1 to 8 bits per pixel) in the global header, flags, background color and pixel aspect ratio
of the global screen; the width, height, position of the individual images to be displayed in the
global screen,rendering width and height of each image,local color table size,flag for interlaced
images and flag indicating local color table.

typedef struct

/*Global Fields*/

GIF_INT16 globwidth; /*Width of the global screen*/

GIF_INT16 globheight; /*Height of the global screen*/

GIF_INT16 glob_out width; /*Width of the global screen*/

GIF_INT16 glob_out_height; /*Height of the global screen*/

GIF_UINT8 globpixbits; /*Number of bits per pixel in global
table*/

GIF_UINT8 globbc; /*Back ground color*/

GIF_UINT8 globaspect; /*Pixel aspect ratio*/

GIF_UINT8 glob_color_tbl_size;/*2 power N+1 gives entries in color
table*/

GIF_UINT8 glob_color_tbl_sort_flag;/*Color table Sort Flag*/

GIF_UINT8 glob_bpp; /*Bits per pixel minus 1*/

GIF_UINT8 glob_color_tbl_flag;/*Set if Global color table is
present*/

/*Local Fields*/

GIF_INT16 image_left;/*Left offset of Image within logical screen*/

GIF_INT16 image_top;/*Top offset of Image within logical screen*/

GIF_INT16 scaled_image left; /*Scaled left offset of Image within
logical screen*/

GIF_INT16 scaled_image_top; /*Scaled top offset of Image within
logical screen*/

GIF_INT16 image_width; /*Input Image width*/

GIF_INT16 image_height; /*Input Image height*/

GIF_INT16 out_image width; /*0utput Image width*/

GIF_INT16 out_image height; /*0utput Image height*/

GIF_UINT8 image_pixbits; /*Local color table size*/

GIF_UINT8 interlace; /*No Interlace - 0 and Interlaced - 1*/

GIF_UINT8 local_color_table flag;/*Indicator for local color table

flag presence*/
GIF_UINT8 trans_color_flag; /*Flag to indicate the usage of

© Freescale Semiconductor, Inc. 2005

Freescale Confidential Proprietary 11

Application Programmers Interface for GIF Decoder

GIF_UINT8 user_input_flag;
GIF_UINT8 disposal_method;
GIF_UINT16 delay_ time;
GIF_UINT16 trans_color_index;
GIF_INT16 loop_count;

08-6465-SIS-ZCH66 2.01

transparency color index*/

/*User input flag*/

/*Disposal Method*/

/*Delay Time*/

/*Transparency Color index*/
/*Number of times animation should

repeat. Present in application extension block*/

GIF_INT32 pass;
GIF_UINT32 pix_count;
} GIF Decoder Info Init;

/*Pass*/
/*Pixel count*/

Element Description
globwidth Width of the global screen
globheight Height of the global screen
Glob_out_ width Ouptut width of the global

screen
Glob_out height Output height of the global
screen

Glob pixbits

Number of bits per pixel in

global header (Value 1 to 8)
Globbc Background color index (into the
global color table)
globaspect Global Aspect Ratio

glob_color_tbl_size

2 power N+1 gives entries in
global color table

glob_color_tbl _sort flag

Color table Sort Flag

glob_bpp

Bits per pixel minus 1

glob color tbl flag

Set if Global color table is
present

image left

Left offset of Image within
logical screen

image top

Top offset of Image within
logical screen

Scaled image_left

Scaled left offset of Image
within Jlogical screen

Scaled image top

Scaled top offset of Image
within Jlogical screen

image width

Frame width

image height

Frame height

out image width

Rendered frame width

out image height

Rendered frame height

image pixbits

2 power (image pixbits+1l) is the
number of entries in the local
color table. (Range 0 to 7)

interlace

Interlace Flag
Non Interlaced-0 Interlaced - 1

local color_table flag

Valid values 0 & 1.If set image
uses a local color table

trans color flag

Valid values 0 & 1.Set when the
transparent color index is used.

user input flag

Valid values 0 &1.When set ,the
application should wait for the
user input before displaying the
next image.

disposal method

Specifies what the decoder is to
do after image is displayed.

0 No action

1 Leave the image in place

2 Restore the bkgd color

© Freescale Semiconductor, Inc. 2005

Freescale Confidential Proprietary e 12

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

3 Restore what was in place
beforethe image was drawn

delay time Amount of time the decoder
should wait before continuing to
process the stream in 1/100" of
a second

trans_color_ index If transparent color flag is
set,pixels withis color value
are not written to the display

loop_ count Number of times animation should
repeat. Present in application
extension block

pix count Pixel Counrt
Pass Number of passes (for interlaced
images)

/*Bitcount in enumerated data types*/
typedef enum

~

E BIT COUNT 1
E_BIT COUNT 2
E BIT COUNT 3
E _BIT COUNT 4
E_BIT COUNT 5 =
E _BIT COUNT 6
E _BIT COUNT 7
E_BIT COUNT 8 =

}bit count;

~

~

~

1]
OO WNh R

~

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 13

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

4 GIF Decoder - Interface

This section describes the interfaces of the GIF Decoder.

4.1 Memory Query

The GIF decoder does not perform any dynamic memory allocation. However, the decoder memory
requirements may depend on the type of GIF bit stream. The application has to allocate memory as
required by the decoder. Querying for memory requirements is divided into two parts.

e Memory requirement for global data of a GIF input stream

Application first needs to query for memory by calling the function GIF_query_dec_mem. This
function must be called before all other decoder functions are invoked. This function parses the
global information (global header and global color table) from the bitstream and fills the memory
information structure array. The application will then allocate memory and gives the memory
pointers to the decoder by calling the initialization function (GIF_decoder_init). During the
memory query, this function pointed by function pointer GIF_get_new_data to provide input bit
stream required for the memory query. This routine needs to be called at the beginning of every
new file/stream.

e Memory requirement for individual frames of a GIF input stream

GIF_query_dec_mem_frame needs to be called for every frame.This function is invoked after the
GIF_query_dec_mem and GIF_decoder_init functions are called. This function parses the
information related to each frame from the bit stream and fills the memory information structure
array. The application will then allocate memory and gives the memory pointers to the decoder by
calling the frame initialization function(GIF_dec_init). During the memory query, this function
pointed by function pointer GIF_get_new_data to provide input bit stream required for the memory
query. This routine needs to be called at the beginning of every new frame.

C prototype:
GIFD_RET_TYPE GIF_query_dec_mem (GIF_Decoder Object *);

Arguments:
Decoder Object pointer.

Return value:
e GIFD_OK - Memory query successful.
e Other code - Error

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 14

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

C prototype:
GIFD_RET_TYPE GIF_query_dec_mem_frame (GIF_Decoder_ Object *);

Arguments:
Decoder Object pointer.

Return value:
e GIFD_OK - Memory query for a frame successful.
e Other codes - Error

4.2 Initialization

All initializations required for the decoder is done in the initialization routines. Initialization is also
divided into two parts.

o Initialization for the global data

GIF_decoder_init() initializes the global data required for decoding the GIF input stream. This
routine must be invoked after GIF_query_dec_mem is called. It calls GIF_get_new_data to provide
input bits required for initialization. The application need to allocate the memory needed by the
decoder and fill the pointers of the GIF_Mem_Alloc_Info structure before calling the function.The
function also initializes the members of the Gif_Decoder_Info_Init structure (members pertaining
global information).The initialization routine needs to be called at the beginning of every new
file/stream.

e Initialization for each frame of a GIF input stream

GIF_dec_init_frame() initializes the data required for decoding each frame of a GIF input stream.
This routine must be invoked after GIF_query_dec_mem_frame is called. It calls
GIF_get new_data to provide input bits required for initialization. The application needs to
allocate the memory needed by the decoder and fill the pointers of the GIF_Mem_Alloc_Info
structure before calling the function. The function also initializes the members of the
Gif_Decoder_Info_Init structure (members pertaining frame information).This initialization routine
needs to be called at the beginning of every new frame.

C prototype:
GIFD_RET_TYPE GIF_decoder_init (GIF_Decoder_Object *);

Arguments:
e Decoder Object pointer.

Return value:

e GIFD_OK - Initialization successful.
e Other codes - Initialization Error

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 15

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

C prototype:
GIFD_RET _TYPE GIF_decoder_init_frame(GIF_Decoder_Object *gif_dec_obj);

Arguments:
o Decoder Object pointer.

Return value:
e GIFD_OK - Initialization for the frame successful.
e Other codes - Initialization Error

4.3 Decoding

The main decoder function is GIF_decode(). This function decodes one frame from the GIF bit
stream to generate the decoded image pixels in RGB format for that frame. The decoder should be
initialized with global and frame information before this function is called. During the process of
decoding, the function GIF_get_new_data() gets called whenever the decoder runs out of input.
The calling application needs to provide a new buffer filled with input data when
GIF_get_new_data is called. The decoder returns the used up buffer to the calling application. The
calling application can fill up fresh data in the returned buffer and keep it ready for use in the next
GIF_get_new_data call.

The output buffer is filled for each frame with RGB pixels of the required output format and
intended size for display.

If errors are encountered in the bit stream, the decoder handles these errors internallyl.

C prototype:
GIFD_RET_TYPE GIF_decode (GIF_Decoder Object *dec_obj,
GIF_UINT8 *output_buf)

Arguments:

dec_obj Decoder Object pointer

output_buf Output buffer pointer

Return value:

GIFD_OK - indicates decoding for frame was successful.
Others codes - indicates error

4.4 APl Version

This is the decoder function to get the API version information.

C prototype:
const char * GIFD_CodecVersionlnfo(void)

! Example error handling framework listed in .h file in Appendix

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 16

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Arguments:
None

Return value:
const char * The pointer to the constant char string of the version information string

4.5 Function implemented by application

The GIF decoder requires functions to read data from input stream which needs to be implemented
by the calling application. The GIF decoder API uses function pointers to invoke these functions.

Function pointed by this function pointer is called by the decoder library whenever it runs out of the
input data. It returns the used up buffer to the calling application. The calling application fills up
new data in the returned buffer and makes it available for use in the next call to
GIF_get_new_data.The amount of data read from the input stream is updated in the buffer length
field. The variable ‘dec_obj’ is a pointer to decoder object.This is particulary useful when the
application needs to suspend the decoder.

C prototype:

GIFD_RET_TYPE GIF_get new _data (
GIF_UINT8 **new_buf ptr,
GIF_INT32 *new_buf len,
GIF_Decoder_Object *gif _dec obj);

Arguments:

new_buf ptr Pointer to pointer to new buffer data
new_buf_len Length of the new buffer data

gif_dec_obj Pointer to GIF decoder object

Return value:

GIFD_OK - indicates fetching of data was successful.
GIFD_SUSPEND - Suspend the decoder

Others codes - indicates error

4.6 Suspension

There are two ways the application can suspend the GIF decoder. The first method is by the use of
GIF_decode() after which control is returned to the calling application. The second method is by
the use of GIF_get_new_data().

Suspension using the second method takes place as follows:
1. The flag TEST_SUSPENSION is defined in the test application

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary 17

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

2. A static variable is declared in GIF_get_new_data() function and is incremented each time

the function is called.

After some calls to the function, GIF_get_new_data() returns the code GIFD _SUSPEND.

4. The library comes out of the decoding function with return code as GIFD _SUSPEND. The
decoder library also updates a state variable, which will tell the application how many bytes
of data have been read in the current frame. This will help for the application to seek back
that many bytes in the current frame so that the decoding of the frame can be started from
the beginning of the frame when the data is ready.

5. The application sets the state of the decoder as suspended.

6. When the data is ready, the application sets the input pointer to the start of the current
frame .The application then resumes with the decoding of the frame that was being decoded
before the suspension took place. The application needs to call
GIF_query_dec_mem_frame(), GIF_decoder_init_frame and GIF_decode() sequentially
for that particular frame, irrespective of the routine it was suspended from, whether
GIF_query_dec_mem_frame(), GIF_decoder_init_frame or GIF_decode().

w

4.7 Overview of APl Usage

e Query for memory using GIF_query_dec_mem(). GIF Decoder returns memory required

e Calling function (i.e. the application that uses the GIF decoder) allocates memory for global
data and fills up GIF_Decoder_Object.mem_info.mem_info_subli].ptr

e Calling function fills up the decoder parameters.

e The calling function initializes the GIF decoder with global information by calling
GIF_decoder_init()

e Calling function allocates memory for frame data and fills up
GIF_Decoder_Object.mem_info.mem_info_subl[i].ptr by calling
GIF_query_dec_mem_frame()

e The calling function initializes the GIF decoder with frame information by calling
GIF_decoder_init_frame()

e The calling function sets the required output format to be displayed, say RGB888 and
allocates the output buffer for each frame.

e For each frame, the calling function calls the GIF decoder, i.e. GIF_decode() that is
required to decode and post process the decoded output.After decoding of each frame the
output buffer contains decoded data of that frame.

The GIF_query_dec_mem(),GIF_decoder_init, GIF_query_dec_mem_frame(),
GIF_decoder_init_frame and GIF_decode() internally call the function pointed by the function
pointer GIF_get_new_data when they run out of the input bits. This function returns the used input
buffer and accepts the new input buffer.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 18

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Appendix A RGB/BGR output formats
supported

A-1 RGB888 FORMAT

A-1-1 Unwrapped format

In the RGB888 image data format, each pixel requires 3 bytes. The image data is organized as
follows.

Unwrapped RGB888 Image data format

DATA (MSB -> LSB)
R; RsRs R, Rz Ry R; Ry G7Gg Gs G4 G3 G, G; Gy By B Bs B, B; B, By By

The library provides data in the aforementioned unwrapped format.

A-1-2 Wrapped format

In order to facilitate easy viewing of the raw RGB888 data, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB888 Image Fields

HEADER DATA (MSB -> LSB)
R7 Re R5 R4 R3 R2 Rl Ro G7GB G5 G4 G3 Gz Gl Go B7 Be B5 B4 B3 Bz Bl Bo

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pagm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 19

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

A-2 RGB565 FORMAT

A-2-1 Unwrapped format

In the RGB565 image data format, each pixel requires 2 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 565 data would be as follows.

Unwrapped RGB565 Image data format

DATA (MSB -> LSB)
R; Rs Rs Ry Ry G;Gg Gs G4 G; G, B Bg Bs By Bs

The library provides data in the aforementioned unwrapped format. Note that this data can be
organized in the little endian or big endian format, depending on the endianness of the target of
execution.

A-2-2 Wrapped format

In order to be consistent with the wrapped format for RGB888, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB565 Image Fields

HEADER DATA (MSB -> LSB)
R; Rs R5s Ry R; G;Gg G5 G4 G3; G, B; Bg Bs B, B;

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pagm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary 20

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

A-3 RGB555 FORMAT

A-3-1 Unwrapped format

In the RGB555 image data format, each pixel requires 2 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 555 data would be as follows

Unwrapped RGB555 Image data format

DATA (MSB -> LSB)
0 R; Rg Rs Ry R; G:Gg Gs G4 G; By Bg Bs B By

Among the 16 bits, the most significant bit is set to zero.
The library provides data in the aforementioned unwrapped format. Note that this data can be

organized in the little endian or big endian format, depending on the endianness of the target of
execution.

A-3-2 Wrapped format

In order to be consistent with the wrapped format for RGB888, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB555 Image Fields

HEADER DATA (MSB -> LSB)
0 R; Rg Rs R4 R3 G;G¢ G5 G, G3 B7 Bg Bs B, B;

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pagm.html for details on PGM header format.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 21

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

A-4 RGB666 FORMAT

A-4-1 Unwrapped format

In the RGB666 image data format, each pixel requires 3 bytes. Consider the RGB888 data depicted
in the previous section. The derived RGB 666 data would be as follows

Unwrapped RGB666 Image data format

DATA (MSB -> LSB)
R;Rs Rs Ry Ry R, 00 G; Gg Gs G4 G3 G, 00 B; B Bs B, B3 B,0 0

Within each byte, the two least significant bits are set to zero. This choice of padding zeros towards
the LSB lends itself to easy viewing of the rendered RGB666 data.

The library provides data in the aforementioned unwrapped format.

A-4-2 Wrapped format

In order to facilitate easy viewing of the raw RGB666 data, the sample test wrapper prepends
headers to make it compatible with the Portable Bit-Map formats, i.e. PGM (Portable GrayMap) in
case of grayscale data or PPM (Portable PixelMap) in case of colour data.

Wrapped RGB555 Image Fields

HEADER DATA (MSB -> LSB)
R ReRs R4 R3R,00G; G G5 G, G3;G,00B;BsB; B, B3 B,00

Please refer to http://netpbm.sourceforge.net/doc/ppm.html for details on PPM header and
http://netpbm.sourceforge.net/doc/pagm.html for details on PGM header format.

A-5 BGR FORMAT

In BGR format, R component and B component are exchanged in store order according to
corresponding RGB format addressed above.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 22

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/pgm.html

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Appendix B Suspension and Resumption
Mechanism

To test the suspension mechanism, two compile time flags ENABLE_SUSPENSION and
TEST_SUSPENSION have been provided.

ENABLE_SUSPENSION - This flag is defined in the file
/ARM11/src/image/gif_dec/library/debug.h. It is used to enable/disable the suspension-resumption
mechanism in the library.

TEST_SUSPENSION - This flag is defined in the file
IARM11/src/image/gif_dec/test/c_source/gif_test.c. When this flag is set, the sample application
provided (gif_test.c) enables the code that specifically tests the suspension-resumption feature
provided by the library. A prerequisite for TEST_SUSPENSION to be set is that the
ENABLE_SUSPENSION needs to be set.

Note that by default (as in the sample library provided), both flags have been disabled. The user can
set these as per need?.

To simulate this suspension mechanism following concept is implemented in the application code.

o The flag TEST_SUSPENSION is defined in the test application

e A static variable is declared in GIF_get_new_data() function and is incremented each time
the function is called.

o After some calls to the function, GIF_get_new_data() returns the code GIFD _SUSPEND.

e The library comes out of the decoding function with return code as GIFD _SUSPEND. The
decoder library also updates a state variable (gif_dec_obj. bytes read_in_a_frame), which
indicates to the application how many bytes of data have been read in the current frame.
This application needs to use this variable to seek back that many bytes in the current frame
so that the decoding of the frame can be started from the beginning of the frame when the
data is ready.

e The application sets the state of the decoder as suspended.

o When the data is ready, the application sets the input pointer to the start of the current
frame .The application then resumes with the decoding of the frame that was being decoded
before the suspension took place. The application needs to call
GIF_query_dec_mem_frame(), GIF_decoder_init_frame and GIF_decode() sequentially for

2 Specifically, the libraries (.a files) present in the folder/library have been built with

ENABLE_SUSPENSION flag disabled. So, to test the suspension mechanism library must be
rebuilt with the procedure mentioned earlier with ENABLE_SUSPENSION flag enabled. The
executable may then be generated by enabling the flag TEST_SUSPENSION in gif_test.c file.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 23

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

that particular frame, irrespective of the routine it was suspended from, whether
GIF_query_dec_mem_frame(),GIF_decoder_init_frame or GIF_decode().
e The output generated was found to be bit matching with the reference output.

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 24

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

Appendix C Debug and Log Support

To test the debug and log support, the calling application needs to enable/disable certain compile
time flags in the debug.h file provided in /ARM11/src/image/gif _dec/library/include/ directory.

Following is the list of the compile time flags.
e DEBUG_LEVEL_O
DEBUG_LEVEL 1
DEBUG_LEVEL 2
ENTRY_EXIT
DECODER_STATE
OTHER_INFO
READ_HDR_DATA_IN_INIT
GLOBAL_HEADER_DATA
GLOBAL_COLOR_TABLE
FRAME_HEADER_DATA
FRAME_COLOR_TABLE
FRAME_NUMBER

GIF decoder uses three levels of debug flags DEBUG_LEVEL _0,DEBUG_LEVEL 1 and
DEBUG_LEVEL_3.Other flags are nested in these 3 levels and are enabled/ disabled depending
upon the contents to be logged. Sample debug.h file is provided below .The comments following
the definition of the flags give detailed information about them.

//4 bit representing the various components
//0x1 means level 0 (Function Entry-Exit/General Info)
//0x2 means level 1 (Global GIF data)
//0x3 means 0 & 1 (Global GIF data + Fn Entry exit/General Info)
//0x4 mean 0,1 & 2 (Global GIF data + Frame data +Fn Entry exit/General
Info)
//1T this flag is enabled then a flag, TEST SUSPENSION should
//also be enabled in the application code
//#define ENABLE_SUSPENSION
#define debug_level 0x7
/*0n enabling debug level 0 we get messages regarding
a.Function Entry Exit
b.State of the decoder
*/
#define DEBUG_LEVEL_O ((debug_level >> 0) & 0Ox1)

/*0n enabling debug level 1 we get global data in the
input GIF stream

*/

#define DEBUG_LEVEL_1 ((debug_level >> 1) & 0x1)

/*0n enabling debug level 2 we get frame data in the
input GIF stream

*/

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 25

Application Programmers Interface for GIF Decoder 08-6465-SIS-ZCH66 2.01

#define DEBUG_LEVEL 2 ((debug level >> 2) & 0x1)
/*Nested flags in debug levels*/

#if DEBUG_LEVEL_O

#define ENTRY_EXIT 1 /*Get function entry and exit point messages*/
#define DECODER_STATE 1 /*Get info regarding the state of decoder.
For e.g. Querying for Mem

Req, Initializing etc*/

#define OTHER_INFO 1 /* Get the encoding mode info*/

#define READ _HDR_DATA_IN_INIT 1/*If we want to read header data in init
once again*/
#endif

#if DEBUG_LEVEL 1
#define GLOBAL_HEADER _DATA 1/*Get global header data*/
#define GLOBAL_COLOR _TABLE 1/*Get global color table*/

#endif

#if DEBUG_LEVEL_2
#define FRAME_HEADER DATA 1/*Get frame header data*/
#define FRAME_COLOR_TABLE 1/*Get frame color table*/
#define FRAME_NUMBER 1 /*"Get the decoding frame number*/
#endiF

The sample debug.h file when used with decoder library outputs all the possible messages and data
in the log file

© Freescale Semiconductor, Inc. 2005 Freescale Confidential Proprietary e 26

	Introduction
	1.1 Purpose
	Scope
	1.3 Audience Description
	References
	1.4.1 References
	1.4.2 Freescale Multimedia References

	1.5 Definitions, Acronyms, and Abbreviations
	Document Location
	2 API Description
	2.1 Frame by Frame Decoding

	3 GIF Decoder – Data Structures
	3.1 Basic Data Types
	3.2 GIF_DECODER_OBJECT
	3.3 GIF_MEM_ALLOC_INFO
	3.4 GIF_DECODER_PARAMS
	3.5 GIF_DECODER_INFO_INIT

	4 GIF Decoder - Interface
	4.1 Memory Query
	4.2 Initialization
	4.3 Decoding
	4.4 API Version
	4.5 Function implemented by application
	4.6 Suspension
	4.7 Overview of API Usage

