Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

R 06-3644-API-TX30
AUG 06 , 2008

Z “freescale

semiconductor

Application Programmers
Interface for MP3 Decoder

ABSTRACT:

Application Programmers Interface for MP3 Decoder
KEYWORDS:

Multimedia codecs, MP3

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary o 1

Application Programmers Interface for MP3 Decoder

Revision History

06-3644-API-TX30 2.6

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 18-Feb-2004 Zakir Initial Draft

1.0 23-Feb-2004 Zakir Internal review comments
incorporated

1.1 06-Mar-2004 Zakir Customers comments
incorporated

1.2 21-Jun-2004 Zakir Release for ARM9E

1.3 27-Jul-2004 Zakir PCS comments incorporated.

2.0 06-Feb-2006 Lauren Post Using new format

2.1 16-Oct-2006 Madhav Varma Added bit-rate variable in the
config structure

2.2 11-Apr-2007 Katherine Lu Modified input buffer from 16-
bit unit to 8-bit unit
Updated structure to be same
as the source code

23 17-Oct-2007 Terry Lv Release of mp3d 1.08.

24 25-Mar-2008 Zhongsong Lin Enable Push mode

25 20-May-2008 Bing Song Add version information

2.6 06-Aug-2008 Baofeng Tian Output data format change

© Freescale Semiconductor, Inc. 2005-2008

Freescale Confidential Proprietary o 2

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

Table of Contents

a1 d oo [0 Tox o] o USROS 4
11 PUIDOSE ...ttt 4
O oo oL TR TP PP UURTUPRURN 4
IR B AW o[1= o (ot I L= Yo] o] £ o] o SRS 4
1.4 RETEIBNCES ...ttt sttt e et e e be e be e sbe e eae e e be e be e sbeesbeesaeeeabeanre s 4

141 Y- T P LSS 4
1.4.2 GENEIAl TETEIBINCES ... ittt ettt ettt e e e enes 4
1.4.3 Freescale Multimedia REFEIENCESccoiiiiiiiiiieies s 5
15 Definitions, Acronyms, and ADBreviations.........ccccceveviiiiiiieie s 5
1.6 DOCUMENT LOCALION ...ttt et sttt sttt neeneeenes 6

N N e T =T o 1 o o SRR 7
Step 1. Allocate memory for Decoder parameter StTUCTUIE.........cceevveiierieeie e 7
Step 2: Get the decoder MemMOry reQUIFEMENTSccveieerieiieeie e e sttt sreenes 9
Step 3: Allocate Data Memory fOr the dECOUETcuiiiiierieieee e 10
Step 4: Memory allocation for input DUFFEr ... 11
Step 5: INItIAliZation FOULINEoiiiicc ettt sre e b e 11
Step 6: Memory allocation for OUtPUL DUTTEN...........oviiiiiiece e 12
Step 7: Call the frame deCOde FOULINEcoviieieiiiii e 12
(=] RS R = Tc I 0 1= 00 Y S STS 15
2.1 Call back fUNCLION USAGE ...cviiveeiiecie sttt st s 15

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 3

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

Introduction

1.1 Purpose

This document gives the details of the application programmer’s interface of the MP3 Decoder.

1.2 Scope

This document describes only the functional interface of the MP3 decoder. It does not describe the
internal design of the decoder. Specifically, it describes only those functions by which a software
module can use the decoder.

1.3 Audience Description

The reader is expected to have basic understanding of Audio Signal processing and MP3 decoding.
The intended audience for this document is the development community who wish to use the MP3
decoder in their systems.

1.4 References

1.4.1 Standards

e ISO/IEC 11172-3:1993 Information technology -- Coding of moving pictures and
associated audio for digital storage media at up to about 1.5 Mbit/s -- Part 3: Audio (popularly
known as MPEG-1 Audio).

e ISO/IEC 11172-4:1995 Information technology -- Coding of moving pictures and
associated audio for digital storage media at up to about 1.5 Mbit/s -- Part 4: Conformance
testing (known as MPEG-1 Conformance Testing).

o [SO/IEC 13818-3:1998 Information technology -- Coding of moving pictures and
associated audio information -- Part 3: Audio (popularly known as MPEG-2 Audio LSF).

o “MPEG Layer-3 Bitstream Syntax and Decoding” — by Ralph Sperschneider, issue — 1.3
dated 9" Sep 1997. (This document describes the bitstream syntax of of ISO/MPEG layer3
bitstream. This also includes syntax extension of MPEG Layer3 bitstream to meet the
requirements of very low bitrates and sampling frequencies {8Khz, 11.025Khz, 12Khz}. These
lower sampling frequencies syntax extension is not standardized by ISO is called MPEG-2.5)

1.4.2 General references

e Ted Painter and Andreas Spanias, “Perceptual Coding of Digital Audio”, Proc. IEEE, vol-
88, no.4, april 2000

o H.S.Malvar, “Lapped transforms for efficient subband/transform coding”, IEEE trans.
ASSP, June 1990.

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary o 4

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

e J.P.Princen, A.W.Johnson, A.B.Bradley, “Subband/transform coding using filterbank
design based on time domain aliasing cancellation”, in proc. IEEE Int. conference ASSP,
april1987

e MPEG Layer3 Bitstream syntax and decoding (Includes MPEG 2.5 layer3)

e “ATutorial on MPEG/Audio compression” by Davis Pan

1.4.3 Freescale Multimedia References

MP3 Decoder Application Programming Interface — mp3_dec_api.doc
MP3 Decoder Requirements Book - mp3_dec_regb.doc

MP3 Decoder Test Plan - mp3_dec_test_plan.doc

MP3 Decoder Release notes - mp3_dec_release_notes.doc

MP3 Decoder Test Results — mp3_dec_test_results.doc

MP3 Decoder Performance Results — mp3_dec_perf_results.doc

MP3 Decoder Interface Header — mp3_dec_interface.h

MP3 Decoder Application Code — mp3_dec_api.c

1.5 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

AAC Advanced Audio Coding

ADIF Audio_Data_Interchange_Format

ADTS Audio_Data_Transport_Stream

API Application Programming Interface

ARM Advanced RISC Machine

DAC Digital to Analog Converter

FSL Freescale

IEC International Electro-technical Commission
ISO International Standards Organization

LC Low Complexity

MDCT Modified Discrete Cosine Transform

MP3 Layer 3, MPEG2 Layer3 and MPEG2.5 Layer 3
MPEG Moving Pictures Expert Group

(O] Operating System

PCM Pulse Code Modulation

PNS Perceptual Noise Substitution

RVDS ARM RealView Development Suite

TBD To Be Determined

UNIX Linux PC x/86 C-reference binaries

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary 5

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

1.6 Document Location

docs/mp3_dec

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary o 6

http://compass.freescale.net/go/161852887
http://mephisto.ea.freescale.net/wsd/platform.html

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

2 API Description

This section describes the steps followed by the application to call the MP3 decoder. During each
step the data structures used and the functions used will be explained. Pseudo code is given at the
end of each step. The member variables inside the structure are prefixed as mp3d_ or app_ to
indicate if that member variable needs to be initialized by the decoder or application.

The MP3 decoder API currently support 2 kinds of bitstream mode: the PUSH mode and the PULL
(which has been adopted before this version) mode. In the PUSH mode, the decoder will not call
swap functions to read in MP3 bitstreams as the original PULL mode does. It is the application’s
duty to supply enough bitstream for the decoder to decode one frame. PUSH and PULL mode is
switched in the makefile of decoder, but both modes share the same interface definition.

Step 1. Allocate memory for Decoder parameter
structure

The application allocates memory for the structure mentioned below. This structure contains the
decoder parameters and memory information structures.

/* Decoder parameter structure */
typedef struct {

MP3D Mem Alloc_ Info mp3d_mem_info;

Void *mp3d_decode info struct ptr;
MP3D OUTPUT FORMAT app_out format;

MP3D INTS8 (*app _swap_ buf) (

MP3D UINT8 ** new buf ptr,
MP3D INT32 *new buf len,
MP3D Decode Config *dec config);

MP3D INT8* pInBuf;
MP3D INT16 inBufLen;
MP3D INT16 consumedBufLen;

} MP3D Decode Config;

Description of the decoder parameter structure

mp3d_mem_info
This is memory information structure. The application needs to call the function
mp3d_query_dec_mem to get the memory requirements from decoder. The decoder will
fill this structure. This will be discussed in step 2.

mp3d_decode_info_struct_ptr
This is a void pointer. This will be initialized by the decoder during the initialization
routine. This will then be a pointer to a structure which contains the pointers to tables,
buffers and symbols used by the decoder.

app_out_format
The application has to indicate the decoder the output precision required to be outputted.
The decoder can output the PCM samples either as 16bit samples or as 24bit samples.

app_swap_buf (used in PULL mode only)
Function pointer to swap buffers. The application has to initialize this pointer.

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 7

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

pInBuf (used in PUSH mode only)
Pointer. to input bitsream. The application has to set this value correctly before decoding
one frame.

inBufLen (used in PUSHmMode only)
Length of the input buffer..The application has to set this value correctly before decoding
one frame.

consumedBufLen (used in PUSH mode only)
The length of bitstream consumed by decoding one frame. The decoder return this value to
the application.

Example pseudo code for this step:
/* Allocate memory for the decoder parameter */
dec_config = (MP3D_Decode_Config *)
alloc (sizeof(MP3D_Decode Config);

/* Request the output PCM samples to be in 16bit format/24 bits */
dec_config->app_output_precision = MP3D_16 BIT_OUTPUT;

#ifndef PUSH_MODE

/* Assign swap-buffer function to swap buffer function pointer */
dec_config->app_swap_buffer = app_swap_buffers_mp3_dec;

#else
dec_config->pInBuf = mp3_input;
dec_config->inBufLen = MP3D_INPUT_BUF_SIZE;

#endif

Step 2. Get the decoder version information

This function returns the codec library version information details. It can be called at any time and
it provides the library’s information: Component name, supported ARM family, Version Number,
supported OS, build date and time and so on.

The function prototype of mp3d_decode_versioninfo is :

C prototype:
const MP3D INT8 * mp3d decode versionInfo();

Arguments:
e None.

Return value:
e const char * - The pointer to the constant char string of the
version information string.

Example pseudo code for the memory information request

{

// Output the MP3 Decoder Version Info
printf("'%s \n', mp3d_decode_versionlnfo());

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary o 8

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

Step 3. Get the decoder memory requirements

The MP3 decoder does not do any dynamic memory allocation. The application calls the function
mp3d_query_dec_mem to get the decoder memory requirements. This function must be called
before all other decoder functions are invoked.

The function prototype of mp3d_query_dec_memis :

C prototype:
MP3D RET TYPE mp3d query dec _mem (MP3D Decode Config * dec config);

Arguments:
e dec_config - Decoder config pointer.

Return value:
e MP3D_OK - Memory query successful.
e Other codes - Error (For other error codes refer to appendix).

This function populates the memory information structure, which is described below:

Memory information structure array
typedef struct {

/* Number of valid memory requests */

MP3D INT32 mp3d num_reqgs;

MP3D Mem Alloc Info_ Sub mem_info sub[MAX NUM MEM REQS] ;
} MP3D Mem Alloc Info;

Description of the structure MP3D Mem Alloc Info
mp3d_num_reqgs

The number of memory chunks requested by the decoder.
mem_info_sub

This structure contains each chunk’s memory configuration parameters.

typedef struct {
MP3D INT32 mp3d size; /* Size in bytes */
MP3D _INT32 mp3d type; /* Memory type Fast or Slow */
MP3D MEM DESC mp3d mem desc;
/* Flag to indicate Static / Scratch memory */
MP3D INT32 mp3d priority;
/* In case of Fast Memory type, specify the priority*/
void *app base ptr;
/* Pointer to the base memory , which will be allocated and
filled by the application*/
} MP3D Mem Alloc Info Sub

Description of the structure MP3D_Mem_Alloc_Info_sub

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 9

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

mp3d_size
The size of each chunk in bytes.

mp3d_type:
The type of the memory indicates if the requested chunk of memory needs to be allocated
in external or internal memory. The type of memory can be SLOW_MEMORY or
external memory, FAST_MEMORY or internal memory. In targets where there is no
internal memory, the application can allocate memory in external memory.

(Note: If the decoder request for a FAST_MEMORY for which the application
allocates a SLOW_MEMORY, the decoder will still decode, but the performance (Mhz)
will suffer.)

mp3d_mem_desc
The memory description field indicates whether requested chunk of memory is static or
scratch.

mp3d_priority

In case, if the decoder requests for multiple memory chunks in the Fast memory, the
priority indicates the order in which the application has to prioritize placing the requested
chunks in Fast memory.

app_base_ptr
This will be initialized by the application. The application will allocate the memory for
each chunk depending on the requested size and the type and assign the base pointer of this
chunk of memory to app_base_ptr. The application should allocate the memory which is
aligned to a 4 byte boundary in any case.

Example pseudo code for the memory information request

/* Query for memory */
retval = mp3d_query_dec_mem (&dec_config);

if (retval !'= MP3D_OK)
return 1;

Step 4: Allocate Data Memory for the decoder

In this step the application allocates the memory as required by MP3 Decoder and fills up the base
memory pointer ‘app_base_ptr’ of ‘MP3D_Mem_Alloc_Info_sub’ structure for each chunk of
memory requested by the decoder.

Example pseudo code for the memory allocation and filling the base memory pointer by the
application

MP3D_Mem_Alloc_Info_sub *mem;

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 10

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

/* Number of memory chunks requested by the decoder */
nr = dec_config->mp3d_mem_info.mp3d_num_req;

for(i = 0; 1 < nr; i++)

{
mem = &(dec_config->mem_info_sub[i]);
if (mem->mp3d_type == MP3D_FAST_MEMORY)
/* This function allocates memory in internal memory */
mem->app_base ptr = alloc_fast(mem->mp3d_size);
}
else
{
/* This function allocates memory in external memory */
mem->app_base ptr = alloc_slow(mem->mp3d_size);
}
}

The functions alloc_fast and alloc_slow are required to allocate the memory aligned to 4 byte
boundry.

Step 5: Memory allocation for input buffer (pull
mode)

The application has to allocate the memory needed for the input buffer. It is desirable to have the
input buffer allocated in FAST_MEMORY, as this may improve the performance (Mhz) of the
decoder. There is no restriction on the size of the input buffer to be given to the decoder. The
recommended minimum size would be 2Kbytes. The decoder, whenever it needs the MP3 bit-
stream, shall call the function app_swap_buffers_mp3_dec internally from the function
mp3_decode_frame.

app_swap_buffers_mp3_dec should be implemented by the application. The application might have
different techniques to implement this function. Sample code is given in section 5.1.1

Example pseudo code for allocating the input buffer

/* Allocate memory for input buffer */
input_buffer = alloc_fast(MP3D_INPUT_BUFFER_SIZE);

Step 6: Initialization routine

All initializations required for the decoder are done in mp3d_decode_init. This function must be
called before the main decoder function is called. The input buffer pointer and the input buffer
length needs to be passed to the initialization function. This is required by the decoder to start
decoding the bitstream to begin with.

C prototype:
MP3D RET TYPE mp3d decode init (
MP3D Decode Config *,

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary 11

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

MP3D UINT8 *input buffer,
MP3D INT32 input buffer length);

Arguments:

e Decoder parameter structure pointer.

e input_buffer Initial pointer to the input buffer

e input_buffer_length Length of the input buffer passed in bytes.
Return value:

¢ MP3D_OK - Initialization successful.

e Other codes - Initialization Error

Example pseudo code for calling the initialization routine of the decoder

/* input buffer length to be passed */
input_buffer_length = MP3D_INPUT_BUFFER_SIZE;

/* Initialize the MP3 decoder. */
retval = mp3d_decode_init (dec_config, input buffer,
input_buffer_length);

it (retval = MP3D_O0K)
return 1;

Step 7: Memory allocation for output buffer

The application has to allocate memory for the output buffers to hold the decoded stereo PCM
samples for a maximum of one frame size. The pointer to this output buffer needs to be passed to
the mp3d_decode_frame function. The application can allocate memory for output buffer using
alloc_fast. Allocating memory in internal memory using alloc_fast will improve the performance
(Mhz) of the decoder marginally. Mp3 decoder provide two type of output data format,
correspondingly, there should exist two kind of output buffer allocation case.

Example pseudo code for allocating memory for output buffer

/* Allocate memory for output buffer */
MP3D_FRAME_SIZE = 576;
if(dec_config->app_out_format == MP3D_24 BIT_OUTPUT)
outbuf = (MP3D_INT32 *)alloc_fast ((sizeof(long))*2*2*MP3D_FRAME_SIZE);
else
outbuf = (MP3D_INT32 *)alloc_fast ((sizeof(short))*2*2*MP3D_FRAME_SIZE);

Step 8: Call the frame decode routine

The main MP3 decoder function is mp3d_decode_frame. This function decodes the MP3 bit stream
in the input buffer to generate one frame of decoder output per channel in every call. The output
buffer is filled with left channel and the right channel samples interleaved. For 16-bit stereo output,
left sample and right sample use one compact 32-bit word. For 24-bit stereo output, each sample

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 12

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

use one 32-bit word, locate in Isb part. In case of mono streams, the decoder fills samples in a
sequential order.

The decoder fills up the structure MP3D_Decode_Params.

typedef struct {
MP3D INT32 mp3d sampling freq;
/* Sampling frequency of the current frame in Khz */
MP3D INT32 mp3d num channels;
/* Number of channels decoded in current frame */
MP3D INT32 mp3d frame size;
/* Number of stereo samples being outputted for this frame */
MP3D INT32 mp3d bit rate;
/* Indicates bit- rate in kbps
The decoder fills this variable after parsing the header*/
MP3D _INT32 layer;
/* MPEG layer of the current stream
* 1 for layer-I,2 for layer-II and 3 for layer-III */
MP3D INT32 mp3d remain bytes;
} MP3D Decode Params;

If the bit stream has errors, the decoder will try to find the next sync pattern for all types of errors
(mentioned in the appendix), except for the MP3D_END_OF_STREAM.

C prototype:

MP3D _RET TYPE mp3d decode frame (
MP3D Decode Config *dec config,
MP3D Decode Params *dec param,
MP3D INT32 *output buffer);

Arguments:
e dec_config Decoder parameter structure pointer
e dec_param Decoder output parameter pointer
e output_buffer Pointer to the output buffer to hold the decoded samples

Return value:
¢ MP3D_OK Indicates decoding was successful.
e Others Indicates error

When the decoder encounters the end of bitstream, the application comes out of the loop. In case of
error while decoding the current frame, the application can just ignore the frame without processing
the output samples by continuing the loop.

In case of mono bitstreams, as mentioned earlier the decoder fills samples in a sequential order. It is
the responsibility of the application to use it accordingly. One example is the case in which the
application can copy the left channel samples into right channel. This is illustrated in the example
code below.

Example pseudo code for calling the main decode routine of the decoder

#ifdef PUSH_MODE
/* a size thread is used to make sure one frame of mp3 bitstream is in
the input buffer when in PUSH mode
*/
const int sizeThread = SIZE_THREAD;

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 13

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

#endi f
while (TRUE)

/* Decode one frame */

/* The decoded parameters for this frame is available in the
* structure MP3D Decode Params */

retval = mp3d decode frame (dec config, &dec param, outbuf);

if (retval == MP3D END OF STREAM)

/* Reached the end of bitstream */
break;

/

if (retval != MP3D OK)

/* Invalid frame encountered, do not output */
continue;

/

/* If mono, copy the left channel to the right channel. */
if (dec _param.mp3d num channels == 1)

int 1i;

i1 = dec param.mp3d frame size-1;

for (; 1 >= 0; 1i--)

{
outbuf [2 * i] = outbuf [i];
outbuf [2 * 1 + 1] = outbuf [i];

/

/* The output frame is ready for use. Decoding of the next frame
* should start only if the previous output frame has been fully
* output by the application.

*/
audio output frame (outbuf, 2*MP3D FRAME SIZE) ;

#ifdef PUSH MODE

/*
In PUSH mode, input buffer size should be large than SIZE_THREAD
in the exception that the end of bitstream has been reached

*/

leftLength = dec config->inBufLen - dec config->consumedBufLen;
if (leftLength<0)
break;

if (leftLength>sizeThread)

dec config->pInBuf += dec _config->consumedBufLen;
dec _config->inBufLen -= dec config->consumedBufLen;
dec config->consumedBufLen =0;

!

else

{

memcpy (mp3_input, (dec _config->pInBuf+dec config-
>consumedBufLen) , leftLength) ;

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 14

Application Programmers Interface for MP3 Decoder 06-3644-API-TX30 2.6

leftInLength = MP3D INPUT BUF SIZE - leftLength;
if(leftInLength > uFileSize- InBufLen)
leftInLength = uFileSize- InBufLen;

if (InBufLen<uFileSize)
memcpy (mp3_input+leftLength, (input buffer+InBuflLen),leftInLength) ;

InBufLen += leftInLength;
dec _config->pInBuf = mp3_ input;
dec _config->inBufLen = leftLength + leftInLength;
if (dec _config->inBufLen<=0)
break;
dec _config->consumedBufLen =0;

/

#endif

}
Step 9: Free memory

The application releases the memory that it allocated to MP3 Decoder if it no longer needs the
decoder instance.

free (outbuf);
free (inpbuf);
for (i=0; i<nr; i++)

{
b

free (dec_config);

free (dec_config->mem_info_sub[i].-app_base ptr);

2.1 Call back function usage

Call back function is only used when in PULL mode. It is called by the decoder to get a new input
buffer for decoding. This function is called by the MP3 decoder within the mp3d_decode_frame
function when it runs out of current bit stream input buffer. The decoder uses this function to return
the used buffer and get a new bit stream buffer. The call back function call by the decoder will be a
function pointer call. This function will be assigned to the pointer app_swap_buff before the init is
called.

This function should be implemented by the application. The parameter new_buf ptr is a double
pointer. This will hold the recently used buffer by the decoder when this function is called. The
application can decide to free this or do any sort of arithmetic to get any new address. The
application needs to put the new input buffer pointer in *new_buf _ptr to be used by the decoder.

The interface for this function is described below:

C prototype:
MP3D _INT8 (* app swap buff) (
MP3D UINT8 ** new buf ptr,
MP3D INT32 * new buf len,
MP3D Decode Config *mp3d_decoder config);

© Freescale Semiconductor, Inc. 2005-2008 Freescale Confidential Proprietary e 15

Application Programmers Interface for MP3 Decoder

Arguments:
e new_buf ptr

e new_buf len
e mp3d_decoder_config

Return value:
e 0
o -1

Example pseudo code

06-3644-API-TX30 2.6

- Pointer to the new buffer given by the application.
- Pointer to length of the new buffer in bytes. (8bit)
- Decoder configuration structure.

- Buffer allocation successful.
- End of bitstream

INT8 app swap_ buffers mp3 dec (MP3D UINT8 ** new buf ptr,

MP3D INT32 * new buf len,
MP3D Decode Config *mp3d_decoder config)

Request for an input buffer from the application.

Return the used buffer to the application.

Set the new buf ptr to point to the new buffer and
set *new buf len to the length of the new buffer.

Return 0 to the calling function to indicate that new buffer

Else if the application indicates end of bit stream

Set new buf ptr to NULL and *new buf len to 0.

Return -1 to the calling function to indicate the end of

{
Wait for the input buffer.
If the new buffer arrives
has been received.
}
input bit stream.
}
}

© Freescale Semiconductor, Inc. 2005-2008

Freescale Confidential Proprietary e 16

	Introduction
	1.1 Purpose
	Scope
	Audience Description
	References
	1.4.1 Standards
	1.4.2 General references
	1.4.3 Freescale Multimedia References

	Definitions, Acronyms, and Abbreviations
	Document Location
	2 API Description
	Step 1: Allocate memory for Decoder parameter structure
	Step 2: Get the decoder version information
	Step 3: Get the decoder memory requirements
	
	Step 4: Allocate Data Memory for the decoder
	Step 5: Memory allocation for input buffer (pull mode)
	Step 6: Initialization routine
	Step 7: Memory allocation for output buffer
	Step 8: Call the frame decode routine
	Step 9: Free memory
	2.1 Call back function usage

