Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

<
09-7428-API-ZCH70

Z “freescale

semiconductor
1.2

Application Programmers
Interface for MPEG4 ASP
Decoder

ABSTRACT:

Application Programmers Interface for MPEG4 Decoder
KEYWORDS:

MPEG4 ASP, Video codec
APPROVED:

Wang Zening

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 1

Application Programmers Interface for MPEG4 ASP Decoder

Revision History

09-7428-API-ZCH70 1.2

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 01-Dec-2008 Wang Zening Initial Draft

1.0 10-Mar-2009 Ding Qiang Refine for version 1.0 release

11 31-Mar-2009 Chen Qianzong Update for ARM9/ARM11 release
1.2 9-Sep-2009 Chen Qianzong Update DSV configuration

© Freescale Semiconductor, Inc. 2009

Freescale Confidential Proprietary e 2

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

Table of Contents

1

2

a1 oTo [0 To1 T o OSSPSR 4
11 PUIPOSE ...ttt b et a e bt e e b bt sh et ennas 4
1.2 RS0l o] LU P RSP PSR PPTPTRPR 4
1.3 RETEIENCES ..o 4

L.3.1 SEANGAIUS ...eviteieee ettt bbbttt a et 4

1.3.2 Freescale Multimedia REFEMENCEScccceieiieiiiieie e 4
1.4 Definitions, Acronyms, and ABDIeVIiationsS.........c.ccoeiiiiriniiiiiieisse e 4

APT DESCIIPLION ...ttt sttt bbbt b ettt bbbt b e e s e b bt ebearen 6
2.1 DALA STTUCKUIES ...t r e r et enr e r e nr e 6

2.1.1 DeCoder HAaNGIE..........cvieeiiieeei et 6

2.1.2 SMPEgADECINITINTO c..cuviviicicc e e 6

2.1.3 sMpeg4DecMemMAIIOCINTO.....cc.coiiiiie e 7

2.1.4 SMPeg4DeCMEMBIOCK..........cociiiiiiii e 7

2.1.5 eMpegaDeCMEmMAIGNTYPE c.ciiiiiiiieeee ettt sttt e bbb se et st esae e eneens 7

2.1.6 SMPeg4DecSIreamINTO.......cccoiiiiiiiiiee e 8

2.1.7 SMPEegADeCY CHCIBUFccueiiiiiieice s bbb e 8

2.1.8 SMPEOADECAPPCAP . eeerteteetie ettt sttt bbb bbbt 11

2.1.9 SMpeg4DeCFrameMaNAGETcccoivieeririiieie et 11

2.1.10 Callback functions for getting frame DUffers..........cocooeiiiiiiiiiic, 12

2.1.11 Callback functions for rejecting frame bUFfers.........cccccoviviieiiciici e 12

2.1.12 Callback functions for release frame BUfers.........ccccoevveiiviniicc i, 12
2.2 Enumerations and TYPEAEfS ..ot e 13

2.2.1 Library APIREIUIN COUBS......eiiiiriiiiiieiesiesieese e st ste e naanas 13
2.3 Application Programmer Interface FUNCLIONScooiiiiiiniiiine e 13

2.3.1 Query Initialization iNfOrmMation............ccocereiiininenc s 13

2.3.2 Create @ DeCOUEr INSTANCEcvevviviiiiieece et neenas 14

2.3.3 DECOAE FIAME ..veceiciiiieiee ettt ettt ettt sttt b neebe st b e e besbennennans 14

2.3.4 GEL OULPUL TTAME....oitiieici e et 15

2.3.5 FIUSh ONE FrAME ..ot bbb 16

2.3.6 SEEPAIAMELETc.eeiiieitee e 16

2.3.7 GELPAITAMELENoviieieicirie s 17

DECOUEBT USBJE ...ttt ettt sttt sttt b kbbb bbb e bt b ne b e 18
3.1 INTHATIZATION .. ettt ens 18
3.2 Frame DECOTEceevviiiiieieiici ettt ettt bbb bbbttt st ne e 19
K T0C T 1] 1= o OSSPSR 19
3.4 Use SKIp B Frame fRAIUIEcooveiiirieeese e 20
3.5 Useskip B and P Frame fEatUrecooeeiiinieieiscieece s 20
3.6 USE FlUSh OUL FEALUIEvevveiicieie ettt 21

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 3

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

1 Introduction

1.1 Purpose

This document gives the application programmer’s interfaces to MPEG4-ASP / H263-BL Decoder
library.

1.2 Scope

This document does not detail the implementation of the decoder. It only explains the APIs and
data structures exposed to the application developer for using the decoder library

1.3 References

1.3.1 Standards

e [SO/IEC 14496-2:2003

Information technology -- Coding of Audio-Visual Objects — Part2: Visual
e ITU-T H.263 video coding specification.
e ITU-T H.263 Annex X, Profiles and levels definition (SERIES H: AUDIOVISUAL AND
MULTIMEDIA SYSTEMS, Infrastructure of audiovisual services — Coding of moving video,
4/2001)

1.3.2 Freescale Multimedia References

MPEG4 ASP Decoder Application Programming Interface — mpeg4_asp_dec_api.doc
MPEG4 ASP Decoder Release notes - mpeg4_asp_dec_release_notes_arm9.doc
MPEG4 ASP Decoder Release notes - mpeg4_asp_dec_release_notes_arm11.doc
MPEG4 ASP Decoder Datasheet - mpeg4_asp_dec_datasheet_arm9.doc

MPEG4 ASP Decoder Datasheet - mpeg4_asp_dec_datasheet_arm11.doc

MPEG4 ASP Decoder Interface Header — mpeg4_asp_api.h

1.4 Definitions, Acronyms, and Abbreviations

TERM/ACRONYM DEFINITION

API Application Programming Interface
ARM Advanced RISC Machine

FSL Freescale

ISO International Standards Organization
ITU International Telecommunication Union

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 4

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

MPEG Moving Pictures Expert Group

ASP MPEG4 Advanced Simple Profile

SP MPEG4 Simple Profile

VOP Video Object Plane

CDB Configurable Decoding Buffer which means the decoding buffer
are configured before decode every frame

DSV Down Scaled Video

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 5

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2 APl Description

This section describes the APIs supported by the MPEG4 Decoder library. The salient features of
the Decoder are mentioned below.
e Decoder shall be available as a static library and also as a shared library
e Decoder provides APIs along with a set of Data structures to facilitate the process of
decoding
e Library exposes C-style API interfaces
e CPU Scalability

Decoder provides APIs to enable or disable some features of codec to get a better tradeoff between
performance and visual quality.

Currently, there are 3 features which can be switched. Skip B gtames, P/B frames, enable DSV.
DSV is a scalability decoding option. When DSV is enabled, the video is down-sampled during
decoding, the out put video size is half of the original width/height.

2.1 Data Structures

This section describes the data structures used in the decoder interface.

2.1.1 Decoder Handle

The handle of decoder is the only identifier of a certain decoder instance.
typedef void* MPEG4DHandle;

2.1.2 sMpeg4Declnitinfo

This structure holds initial information that the decoder needs to work.
typedef struct

sMpeg4DecMemAl locInfo sMemInfo;
sMpeg4DecStreamInfo sStreaminfo;
S32 s32MinFrameBufferCount;

} sMpeg4Declnitinfo;
Description of the structure sMpeg4Declnitinfo
sMeminfo
The decoder wouldn’t allocate any block of memory internally and the application should
be responsible for memory allocation according to decoder’s request. This field indicates
all the memory requirements expect frame buffers. See section 2.1.3 .
sStreamInfo
High level stream information after initial header parsing. See section 2.1.6 .
s32MinFrameBufferCount
The minimum number of frame buffers that decoder will need. This field is helpful for the
application to allocate frame buffers, filled by decoder.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 6

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2.1.3 sMpeg4DecMemAllocinfo

The application should call eMPEG4DQuerylnitinfo, see section 2.3.1, to get the initial memory
requirement. Generally, memory allocated by the application can be classified into two types, fast
and slow. Fast type memory would be SRAM blocks embedded in the chip and slow type would be
external memory such as SDRAM, DDR, etc.

The application should try its best to allocate faster memory for a sFastMemBIks. If the platform
only provides memory with the same access speed, the application can ignore the different speed

requirement and allocate required memory to these 2 chunks.
typedef struct

sMpeg4DecMemBlock sFastMemBlk; /*!Fast memory Block */
sMpeg4DecMemBlock sSlowMemBlk; /*ISlow memory Block */
} sMpeg4DecMemAl loclinfo;

Description of the structure sMpeg4DecMemAllocinfo
sFastMemBIk

Memory block structure to record fast memory requirement
sSlowMemBIk

Memory block structure to record slow memory requirement

2.1.4 sMpeg4DecMemBlock

This describes the memory chunk requirement details such as size, type, etc. The application shall
allocate memory depending on the requirement and set the pointer in the space provided. The

decoder shall use the memory given by the application.
typedef struct
{

S32 s32Size; /*1< size of the memory block */
eMpeg4DecMemAlignType eAlign; /*1< alignment of the memory block */
void *pvBuffer; /*1< pointer to allocated memory buffer */

} sMpeg4DecMemBlock;
Description of the structure sMpeg4DecMemBlock
s32Size
The size of the memory required (filled by the decoder).
eAlign
The required alignment type of the memory block
The values are defined in the section 2.1.5 .

pvBuffer
This will be updated by the application based on the memory requirement.

2.1.5 eMpeg4DecMemAlignType

This enum holds the memory alignment type.
typedef enum

E_MPEG4D_ALIGN_1BYTE = 0, /*!< buffer can start at any place */

E_MPEG4D_ALIGN_2BYTE, /*1< start address®s last 1 bit has to be 0 */
E_MPEG4D_ALIGN_4BYTE, /*1< start address’s last 2 bits has to be 0 */
E_MPEG4D_ALIGN_8BYTE, /*1< start address’s last 3 bits has to be 0 */
E_MPEG4D_ALIGN_16BYTE, /*1< start address’s last 4 bits has to be 0 */
E_MPEG4D_ALIGN_32BYTE, /*1< start address’s last 5 bits has to be 0 */

} eMpeg4DecMemAlignType;

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 7

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2.1.6 sMpeg4DecStreaminfo

The application should call eMPEG4DQuerylnitinfo to get the high level stream information.
typedef struct

{

/*VOS level*/
S32 s32Profile; /*stream profile, 0 for SP, 1 for ASP*/
S32 s32Level; /*stream level*/

/*VOL level*/

uie ul6éPaddedFrameWidth; /*1< Padded FrameWidth*/
ui6 ul6PaddedFrameHeight; /*1< Padded FrameHeight*/
ul6 ul6ActFrameWidth; /*1< Actual FrameWidth */
ui6 ul6ActFrameHeight; /*1< Actual FrameHeight*/
uie uléLeftOffset; /*cropping origin x*/

u16 ul6TopOffset; /*cropping origin y*/

} sMpeg4DecStreaminfo;
Description of structure sMpeg4StreamInfo
s32Profile
Stream Profile, 0 for SP, 1 for ASP, -1 for others.
If there is no this information in the stream, the default value is 1(ASP).
s32Level
Stream Level
If there is no this information in the stream, the default value is 7(level 3b).
ul6PaddedFrameWidth
This item is the extended and padded frame width.
In the decoder, if the actual picture size if not 16 multiple, the decoding frame size will be
extended to 16 multiple integers. And then it will be padded by a 16 pixel band for
accelerating the decoding, see Figure 1: Storage format and pointers for one padded output
frame
ul6PaddedFrameHeight
This item is the extended and padded frame height
ul6ActFrameWidth
This item is the actual frame width that is indicated in the stream header
ul6ActFrameHeight
This item is the actual frame height that is indicated in the stream header
ul6LeftOffset
Since the exported frame buffer is extended and padded, it is need to be cropped when
display. This item indicate the cropping origin coordinate x
ul6TopOffset
This item indicate the cropping origin coordinate y

2.1.7 sMpeg4DecYCbCrBuf

This Data structure encapsulates the decoded YCbCr buffer.
typedef struct

unsigned char *pu8YBuf; /*1< Y Buf must be 4 bytes aligned*/
unsigned char *pu8UBuf; /*1< U Buf must be 4 bytes aligned*/
unsigned char *pu8VBuf; /*1< V Buf must be 4 bytes aligned*/

S32 s32YBuflLength; /*size must be padded_width x padded_height, maybe need not this item*/

S32 s32UBuflLength; /*size must be padded_width x padded_height/4, maybe need not this item*/

S32 s32VBuflLength; /*size must be padded_width x padded_height/4, maybe need not this item*/

void *pUsrTag /*a Tag that may be used by App. App can use this tag to easily manage the buffers.
It’s App implementation dependent, decoder will not use or change this tag,

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 8

P [Deleted: Figure 1

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

App can ignore this tag also.*/
} sMpeg4DecYCbCrBuffer;

Since the MPEG4 ASP decoder uses CDB scheme (see section 2.1.9), the output format will only
be the padded YUV picture. Three pointers are used to present YUV plans respectively to allow the
flexibility. The Y,U,V buffer should be continuous for the current version.
Please note that the meaningful picture is put at the left-top blue area if DSV is enabled
Description of structure sMpeg4DecYCbCrBuffer
pu8Y Buf
pointer to the Y plan of the padded decode buffer
pusUBuUf
pointer to the U plan of the padded decode buffer
pus8VvBuf
pointer to the U plan of the padded decode buffer
s32YBufLength
the size of Y plan of the padded decode buffer. It must be padded_width x padded_height
s32UBufLength
the size of U plan of the padded decode buffer. It must be padded_width x padded_height/4
S32VBuflLength
the size of V plan of the padded decode buffer. It must be padded_width x padded_height/4
pUsrTag
This field is reserved for the application use. How to use is up to the application. For
example, the application can use this tag to mark the frame buffer. If the application doesn’t
need to use it, it can simply ignore this tag.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 9

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

< u16xsiz: »
£ »
pu8YBuf 7y
16
——pu8YBuf act .
Padded
height
416 4-16-p
Y frame
?
16
—pu8UBuf £ 5
——pu8UBuf _act >
ta (8
Cb frame
8
pu8VBuf ——» g
[«8pf €8y
Cr frame
8

<4——Uulbxsize—— >

Figure 1: Storage format and pointers for one padded output frame
In the above diagram, the value 16 vertically and horizontally specifies the pad.

In case of YUV padded output format, to calculate the pointer to the actual data the following
relations can be used:

pu8YBuf _act = pu8YBuf + ((16*ul6xsize) + 16)
pu8UBUf _act = pu8UBUF + ((8*ul6cxsize) + 8)

Note: The padded height calculation is based on the assumption that Y buffer is followed by Cb
buffer.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 10

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2.1.8 sMpeg4DecAppCap

This structure can be used to facilitate the decoder to refine configuration according to the
application/platform’s setting. Currently the memory capacity is included. When the application
query the initialization info from the decoder, it will tells the decoder how much fast memory and
slow memory that the application can allocate for decoder. By this the decoder can post feasible
memory requirement.

typedef struct

S32 s32MaxFastMem;
S32 s32MaxSlowMem;
} sMpeg4DecAppCap;

Description of structure sMpeg4DecAppCap

s32MaxFastMem
The maximum size of fast memory (in bytes) that the application can allocate for the
decoder, -1 for unrestricted

s32MaxSlowMem
The maximum size of slow memory (in bytes) that the application can allocate for the
decoder, -1 for unrestricted

2.1.9 sMpeg4DecFrameManager

This decoder uses a Configurable Decoding Buffer (CDB) mechanism to deal with the frame
buffers. This CDB mechanism means that the frame buffer which would be decoded into is
appointed by the application before decoding every frame.

By adopting this scheme, the application would manage all frame buffers and thus enable much
more flexibility for system level design. It is up to the application’s decision if copying the decoded
frame buffer into display domain or directly rendering it. The CBD mechanism is encapsulated by a
pair of callback functions which should be implemented by the application.

In brief the decoder will use one callback functions to ask a decoding buffer before decoding one
frame and might use another callback function to notify the application that the buffer provided
cannot be used because of some reasons, for example, this frame contains a reference frame.
Additional callback function is used to notify the application that the frame buffer can be reused.

In order to clarify the concept and simplify the API, these 3 callback functions are grouped into a
structure named FrameManager. The prototype of these 3 callback functions are described in

section (section 2.1.1Qand 2.1.1)

typedef struct _sMpeg4DecFrameManager

cbGetOneFrameBuffer GetterBuffer;
cbRejectOneFrameBuffer RejectorBuffer;
cbReleaseOneFrameBuffer ReleaseBuffer;
void* pvAppContext
}sMpeg4DecFrameManager ;

Description of structure FrameManager
GetterBuffer
The callback functions for getting frame buffers
RejectorBuffer
The callback functions for rejecting frame buffers
ReleaseBuffer
The callback function is used to notify the application the decoder will not use this buffer.
pvAppContext

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 11

| -~ { Deleted: 21.10

~ { Deleted: 2..11

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

The application context that set by the application and must be passed back to the
application when getting or rejecting buffers.

2.1.10 Callback functions for getting frame buffers

The callback functions used for getting frame buffers is defined below; it will get one frame buffer
for decoder. This callback function is implemented by the the application.
Prototype:
typedef sMpeg4DecYCbCrBuffer * (*cbGetOneFrameBuffer)(void* pvAppContext);
Arguments:
pvAppContext the App context that is registered with the callback.

Return value:

It must be a frame buffer with padded picture size (section 2.1.6 and 2.1.7), the pointers of YUV
plans must be 4 bytes aligned. When the application can’t provide frame buffer anymore, it can
return NULL, and decoder will stop decoding and return E_MPEG4D_NO_FRAME_BUFFER.

2.1.11 Callback functions for rejecting frame buffers

It is possible that the gotten frame buffer for decoding the current frame still stored the reference
data so the decoder has to reject the buffer. After the rejection by calling this callback function, the
decoder will invoke cbGetOneFrameBuffer to ask for frame buffer again.

A rejected buffer should not be provided to decode (via cbGetOneFrameBuffer) immediately.

If the stream do not has B-Frame (such as MPEG4 SP), the rejected buffer must not be provided to
decoder again in the next invoking of chGetOneFrameBuffer, if the Stream has B-Frame, it must
wait 2 times.

Prototype:
typedef void (*cbRejectOneFrameBuffer)(sMpeg4DecYCbCrBuffer * mem_ptr, void*
pvAppContext) ;

Arguments:
mem_ptr A rejected frame buffer

pvAppContext The App context the registered.

Return value:
None

2.1.12 Callback functions for release frame buffers

It is used to release one frame buffer. It means the decoder notify the application this frame buffer
don’t need occupied as a reference frame or for post process.

Prototype:
typedef void (*cbReleaseOneFrameBuffer) (sMpeg4DecYCbCrBuffer * mem_ptr, void*
pvAppContext) ;

Arguments:
mem_ptr A released frame buffer

pvAppContext The App context the registered.

Return value:
None

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 12

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2.2 Enumerations and Typedefs
2.2.1 Library API Return codes

This enum holds the return types of the APIs.

typedef enum

/* Successfull return values */

E_MPEG4D_SUCCESS = 0, /* Success */

E_MPEG4D_NO_OUTPUT, /* decoded a frame but didn't finish, or it's NULL frame */
E_MPEGA4D_FRAME_SKIPPED /* skipped this frame*/

/* Successful return with a warning, decoding can continue */

/* Recoverable error return, correct the situation and continue */
E_MPEG4D_NOT_ENOUGH_BITS=31, /* Not enough bits are provided */

E_MPEG4D_OUT_OF_MEMORY, /* Out of Memory */
E_MPEG4D_WRONG_AL IGNMENT, /* Incorrect Memory Alignment */
E_MPEGA4D_SI1ZE_CHANGED, /* Image size changed */
E_MPEGA4D_INVALID_ARGUMENTS, /* APl arguments are invalid */
E_MPEG4D_NO_HEADER_INFO, /*no header in the stream when start to decode*/
/* irrecoverable error type */

E_MPEG4D_ERROR_STREAM=51, /* Errored Bitstream */
E_MPEG4D_FAILURE, /* Failure */

E_MPEG4D_UNSUPPORTED, /* Unsupported Format */
E_MPEG4D_NO_FRAME_BUFFER /* decoder can’t get frame buffer */

} eMpeg4DecRetType;

2.3 Application Programmer Interface Functions

2.3.1 Query Initialization information

The application uses this function to query the initialization info such as memory requirement and
minimal decoder buffer number of the decoder for a specific stream. This function would return the
initialization info for the decoder with being fed with the stream header. The decoder will parse the
input bit stream to determine the type of video content, and count the memory requirement depends
on the parsed info.

The application will use these information to allocate the requested memory block (chunks) by
setting the pointers of sFastMemBlks and sSlowMemBlks in sMpeg4Declnitinfo.sMemInfo structure.
And the application need to use the s32MinFrameBufferCount to prepare the frame manager.

Prototype:

eMpeg4DecRetType eMPEG4DQuerylInitinfo(sMpeg4Declnitinfo *psinitinfo,
unsigned char *pu8BitBuffer,
signed long int s32NumBytes,
sMpeg4DecAppCap *AppCap) ;

Arguments:
e psinitinfo [out] pointer to the initialization info
e pu8BitBuffer [in] pointer to the bitstream buffer, the input data must be 4 byte

aligned. And the buffer size should be multiple of 4.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 13

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

e 5s32NumBytes [in] length of the input buffer
e pAPPCap [in] max fast and slow memory that the application can provide
Return value:

eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful
E_MPEG4D_INVALID_ARGUMENTS API arguments are invalid
E_MPEG4D_NO_HEADER_INFO no header in the input stream
E_MEPG4D_ERROR_STREAM detected error in the input stream
E_MPEG4D_NOT_ENOUGH_BITS Input data is not enough to decoder headers
E_MPEG4D_WRONG_ALIGNMENT input data alignment error, must be 4 bytes aligned
E_MPEG4D_UNSUPPORTED unsupported Profile/level/parameter

2.3.2 Create a Decoder instance

After getting the initial information and allocating memory for the decoder, the application can
create the decoder instance. sMpeg4Declnitinfo.sStreamInfo should be the same as what the
application get by invoking eMPEG4DQuerylnitinfo.

A void pointer will be output as the decoder handle.

Prototype:
eMpeg4DecRetType eMPEG4DCreate (sMpeg4Declnitinfo* pslnitinfo, sMpeg4DecFrameManager*
pFrameManager, MPEG4DHandle* phMp4DecHandle);
Arguments:
e pslnitinfo [in] Initialization info such as allocated memory.
e pFrameManager [in] a pointer to a frame manager which is used to get and reject
buffer.
e phMp4DecHandle [out] pointer of the created decoder handle

Return value:
eMpeg4DecRetType Tells whether decoder has been successfully created or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful.
E_MPEG4D_INVALID_ARGUMENTS API arguments are invalid
E_MPEG4D_OUT_OF MEMORY the application did not provide enough memory

2.3.3 Decode Frame

eMPEG4DdecodeFrame is the main decoder function which should be called for decoding each
frame.

The input to this function is bitstream for an encoded frame and size of the encoded stream. The
input data address should be 4 Byte aligned.

The input data must at least include one frame or a header such as VOS, VO, VOL.

At the first invoking of this function, the application should feed data which include at least the
stream header such as VOS, VO, VOL.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary o 14

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

After decoding, how many input data is consumed will be return by the 3 argument. If the input
buffer contains more than one frame, this function should be invoked again with remained data.
Buffer requirement is the same as the previous call.

Prototype:
EXTERN eMpeg4DecRetType eMPEG4DDecodeFrame (MPEG4DHandle hMp4DecHandle,
void *pvBSBuf,
long *s32NumBytes);

Arguments:

e hMp4DecHandle [in] Decoder handle.

e pvBSBuf [in]Stream data buffer for an encoded MPEG4-SP video frame,
the address of pvBSBuf point to should be 4bytes alignment.
And the buffer size should be multiple of 4.

e 532NumBytes [infout] Length of the stream data buffer in number of bytes.

Decoder will also use this argument as an output to inform the
application how much data are consumed.

Return value:
eMpeg4DecRetType Tells whether frames were decoded successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS One frame is successfully decoded.
E_MPEG4D_NO_OUTPUT at the first invoking, only decoded a header
E_MPEG4D_SIZE_CHANGED decoded a new header and detected that in the new

header frame size is changed, App need to restart
the decoding process

E_MPEG4D_FRAME_SKIPPED a frame is skipped, need not to get frame
E_MPEG4D_INVALID_ARGUMENTS API arguments are invalid
E_MPEG4D_NO_HEADER_INFO no header in the stream when start to decode
E_MPEG4D_NOT_ENOUGH_BITS Input data is not enough for decoding a frame
E_MPEG4D_WRONG_ALIGNMENT input data alignment error, should be 4 bytes
aligned
E_MEPG4D_ERROR_STREAM detected unconcealable error in the input stream
E_MPEG4D_NO_FRAME_BUFFER decoder can’t get frame buffer
E_MPEG4D_UNSUPPORTED unsupported Profile/level/parameter

2.3.4 Get output frame

After successfully decoding one frame, the application should call eMPEG4DGetOutputFrame to
get the frame to be displayed.

If *ppsOutBuffer is set to NULL, it means the decoder does not have proper frame be exported.
The cropping work will be carried out in the application’s scope.

This API would be called when the following APIs notify that a frame has been successfully
decoded.

e eMPEG4DDecodeFrame
Since the decode order and display order might be different (for the ASP), the decoder may hold
more than one decoded frame inside the decoder. Under some circumstance such as the end of
decoding or seeking the stream, the application might need to get the frame several times. At this

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 15

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

time, the application needs to call function eMPEGA4DFlushFrame to flush the last frame. Detailed
flush procedure is described in section 3.6 .

Prototype:
eMpeg4DecRetType eMPEG4DGetOutputFrame (MPEG4DHandle hMp4DecHandle,
sMpeg4DecYCbCrBuffer** ppsOutBuffer);

Arguments:
e pMp4DecHandle [in] Decoder object handle
o ppsOutBuffer [out] output argument to record the decoded picture

Return value:
eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful.
E_MPEG4D_INVALID_ARGUMENTS API arguments are invalid
E_MPEG4D_FAILURE Error

2.3.5 Flush one frame
Flush one frame to avoid the frame was reserved by decoder.

Prototype:
eMpeg4DecRetType eMPEG4DFlushFrame (MPEG4DHandle hMp4DecHandle);
Arguments:
e pMp4DecHandle [in] Handle of the Decoder that need to be deleted.

Return value:

eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful.

E_MPEG4D_FAILURE Error

2.3.6 Set Parameter

This function sets some indications to decoder to configure the additional features of the decoder.
The additional features skip B frame, skip B and P frame,enable DSV.
These configurations can be set and reset at anytime.

e For skip B and P frame setting, the decoder will record this setting and decode | frame only.
The application may reset this setting, it is, resume from skpping. Because the P frame
might be used as the reference frame and if it has been skipped, the following B frame
would not be decoded correctly. So, the decoder will still skip the B and P frame until
meeting an | frame.

e Forenable DSV setting, the decoder will output video with half size.The application may
reset this setting but the video quality will not recover until meeting an | frame.

e These features could be configured at the same time by a 32-bit parameter eParaName
o hit0 skip B frame

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 16

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

One means enable the shortcut, “skip B frames of streams”, zero means
disable the shortcut.

o bhitl skip P and B frame
One means enable the shortcut, “skip P and B frames of streams”, zero
means disable the shortcut.

0 bit2 Enable DSV
One means enable the shortcut, “enable down-scaled video”, zero means
disable the shortcut.

0 bit3-31 reserved

Prototype:
eMpeg4DecRetType eMPEG4DSetParameter (MPEG4DHandle hMp4DecHandle, int eParaName)

Arguments:
e pMp4DecHandle [in] Decoder object handle

e eParaName [in] CPU scalability parameter

Return value:

eMpeg4DecRetType Tells whether this function executed successfully or not.
Enumeration is described in the above section. Return values are —

E_MPEG4D_SUCCESS Function successful.

2.3.7 Get Parameter

This function is used for querying the current configuration of the decoder.

Just like the eMPEG4DSetParameter (section 2.3.6), this function takes the parameter names from
the enumeration eMPEG4DParameter.

The configuration will be modified by eMPEG4DdecodeFrame if the DSV feature is not supported.

Prototype:
eMpeg4DecRetType eMPEG4DGetParameter (MPEG4DHandle hMp4DecHandle, U32* pu32ParaValue)

Arguments:

e pMp4DecHandle [in] Decoder object handle

e pu32ParaValue [out] the value of the parameters
Return value:
eMpeg4DecRetType Tells whether this function executed successfully or not.

Enumeration is described in the above section. Return values are —
E_MPEG4D_SUCCESS Function successful.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 17

Application Programmers Interface for MPEG4 ASP Decoder

3 Decoder Usage

3.1 Initialization

09-7428-API-ZCH70 1.2

Decoder

FrameMnag

T
I
step 1:eMPEG4DQuerylnitinfo(Bitstream) }

Return init info

|

1

|

iD step2: Allocate memory for decoder }

step3: eMPEG4DCreate(with the allocated memory,
|

>
__ —}--1 Ig
!
!
!
!
I}
\
\
\
\
\
\
N

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

step4: InitFrameMngr (Stream info such as frame size, minimal frame number)
™ |

|
l
T step5: Set FrameMngr ;

| d

BD prepare frame buffers

As the above figure illustrated, there are 5 steps for initialization of decoder, of cause, the step 4
which is red colored is out of decoder’s scope, and the application may have its own decision on

this step.

© Freescale Semiconductor, Inc. 2009

Freescale Confidential Proprietary o 18

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

3.2 Frame Decode

App Decoder FErameMngr

T
i i !
1 1 !
} decodeFrame(decoderHandle,Bitstream) } }
. . il

GetFrame

Check the buffer

Reject and Get Frame again
I e e ._’

Return and inform decoding finished > decode to the frame

}
|
eMPEG4DGetOutputFrame |
|
|
|
|
|

As the above figure illustrated, when decoding, decoder may invoke Frame Manager many times to
get acceptable buffers. The Frame Manager should hold more than 3 buffers at least for
MPEG4 ASP decoder.

3.3 Finish

T

App Decoder FrameMnar
|
| |
|

Free Memory D

|

|
Delete eMPEG4 Decoder Object

|

| Release FrameMngr

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 19

Application Programmers Interface for MPEG4 ASP Decoder

09-7428-API-ZCH70 1.2

As shown in figure above, the finish is simple, application free the memory block which is
allocated in the initialization step3, and maybe ask Frame manager to release frame buffers

3.4 Use skip B Frame feature

App Decoder
T T
1 i
} 1. Querying initialization info and Createing decod‘er are already done
| 2. Some frames may already be decoded |
| |
| T
} eMPEG4DSetParameter(skip B frame =1) }
decodeFrame(decoderHandle,Bitstream)
If not a B-Frame M
return frame skiped if its a B frame
K== === -
L~ GetFrame
> Check the buffer
Reject and Get Frame again
y__.____7,__.____,,_._.___,__’
Return and inform decoding finished > decode to the frame with error concealment
e 77777777777777777777777777777777777
eMPEG4DGetOutputFrame

If APP want to stop skip B-Frame

eMPEG4DSetParameter(skip B frame =0)

As shown in the figure above, using skip B-Frame feature can be performed by switching the

related parameter via API function eMPEG4DSetParameter.

This figure illustrated frame decoding case, the packet decoding case is just the same.

3.5Use skip B and P Frame feature

As shown in figure below, using skip B&P-Frame feature can be performed by switching the

related parameter via API function eMPEG4DSetParameter.

This figure illustrated frame decoding case, the packet decoding case is just the same.

© Freescale Semiconductor, Inc. 2009

Freescale Confidential Proprietary e 20

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

2. Some frames may already be decoded

App Decoder FrameMngr
i
|
|
I
I
|
|
|
|
|

|
T
1. Querying initialization info and Createing decod:er are already done
|
eMPEG4DSetParameter(skip B&P frame =1) }

.

decodeFrame(decoderHandle,Bitstream)

If not a B or P-Frame

return frame skiped if its a B or P frame

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, -
N -7 GetFrame

b

> Check the buffer

Reject and Get Frame again

Return and inform decoding finished > decode to the frame with error concealment
eMPEG4DGetOutputFrame

If APP want to stop skip B&P-Frame

eMPEG4DSetParameter(skip B&P frame =0)

Decoder will keep skip B&P until meet a | frame

really turn off the skip B&P when meat a | frame

3.6 Use flush out feature

As shown in figure below, using flush out feature can be performed by via API function
eMPEG4DFlushFrame.

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 21

Application Programmers Interface for MPEG4 ASP Decoder 09-7428-API-ZCH70 1.2

|
1. Querying initialization info and Createing decoder are aquady done
2. Some frames may already be decoded

(7]

3
eMPEG4DFlushFrame |

eMPEG4DGetOutputFrame

> turn off the flush out setting automatically
|

© Freescale Semiconductor, Inc. 2009 Freescale Confidential Proprietary e 22

