
Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

08-6354-SIS-ZCH66

4/1/2008

 5.4

TM

Application Programmers
Interface for H.264/AVC Decoder

ABSTRACT:

Application Programmers Interface for H.264/AVC Decoder
KEYWORDS:

Multimedia codecs, H.264, AVC, MPEG
Approved:

Wang Zening

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 1

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Revision History

VERSION DATE AUTHOR CHANGE DESCRIPTION

0.1 23-Jul-2004 Murali Initial Draft

0.2 11-Aug-2004 Murali Review Rework

0.3 24-Sep-2004 Chandra/Murali Review Work

0.4 18-Oct-2004 Chandra/Murali Review Rework

0.5 18-Nov-2004 Chandra/Murali Review Rework

1.0 07-Dec-2004 Chandra Formatted for release 1.0

1.1 21-Dec-2004 Chandra Revised document for call back changes
and formatted text

2.0 14-Apr-2005 Chandra Changed version number and updated
history

2.1 21-Nov-2005 Raja Updated the APIs and Callback functions to
handle the application specific pointer.

3.0 06-Feb-2006 Lauren Post Using new format

3.1 1-Apr-2006 Manoj Arvind Updated API structures

3.2 09-May-2006 Purusothaman Added the details of the Logger Function
and its API.

3.3 09-June-2006 Dheeraj C
Kuchangi

Updated API after clean up.

3.4 24-July-2006 Dheeraj C
Kuchangi

Updated the APIs for additional output
format(UYVY) feature

3.5 4-Sep-2006 Madhu Kumar Updated APIs and API structures after
implementing Annexure C

4.0 21-Sep-2006 Vineet Golchha Updated APIs to avoid memory copy within
library

4.1 26-Sep-2006 Vineet Golchha Updated changes pertaining to the new
VOB structure

4.2 27-Sep-2006 Manoj Arvind Updated API structure for PAF and cleaned
up the sample application code.

4.3 28-Sep-2006 Manoj Arvind Updated comments

5.0 23-Apr-2007 Wang Zening 1. add pre-fetch callback (2.1.7, 2.1.8)
2. Update return type (2.2.1),

E_NO_PICTURE_PAR_SET_NAL and
E_NO_SEQUENCE_PAR_SET_NAL

3. add pre-fetch callback register function
(2.3.3)

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 2

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

4. update section 3.1,section 3.3
5. Add more comments and a appendix

(6.1)

5.1 31-Oct-2007 Li Xianzhong Add error handling, update API return code
E_AVCD_BAD_DATA

5.2 8-11-2007 Wang Zening Add DR change

5.3 14-Nov-2007 Li Xianzhong Change API return code type

5.4 1-Apr-2008 Li Xianzhong Add API for buffer release

5.5 16-Apr-2008 Li Xianzhong Add API for query physical memory

5.6 13-Jun-2008 Li Xianzhong Add API for query codec version and demo
protection information

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 3

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Table of Contents
1 Introduction ...6

1.1 Purpose ..6
1.2 Scope ...6
1.3 Audience Description ..6
1.4 References ...6

1.4.1 Standards ...6
1.4.2 Freescale Multimedia References ...6

1.5 Definitions, Acronyms, and Abbreviations...7
1.6 Document Location ...7

2 API Description...8
2.1 Data Structures ..8

2.1.1 sAVCDecoderConfig ..8
2.1.2 sAVCDMemAllocInfo ..9
2.1.3 sAVCDMemBlock ..10
2.1.4 sAVCDYCbCrStruct ...11
2.1.5 sAVCDConfigInfo ..14
2.1.6 Input buffer interface...14
2.1.7 Pre-fetch NAL interface ..15
2.1.8 sAVCDNAL_FUNCs..16

2.2 Enumerations and Typedefs ..16
2.2.1 Library API Return codes..16
2.2.2 Alignment definitions..18
2.2.3 Output format definitions ..18
2.2.4 Buffer getter ..19
2.2.5 Buffer Rejecter ..19
2.2.6 Buffer Manager ...19
2.2.7 Deblock Option ...19
2.2.8 Buffer Releaser..20
2.2.9 Query Memory ..21
2.2.10 Query Physical Memory Address..21
2.2.11 Initialization ..21
2.2.12 ReQuery Memory..22
2.2.13 Register NAL pre-fetch callback functions...22
2.2.14 Decode...22
2.2.15 Output Frame...23
2.2.16 Output Flush..24
2.2.17 Free Decoder ...24
2.2.18 Set a Buffer Manager ..24
2.2.19 Set Deblock option ..25
2.2.20 Get Deblock option ...25
2.2.21 Callback type definitions...25
2.2.22 Set Callback function ..26
2.2.23 Query decoder version...26

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 4

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

3 Application Notes..27
3.1 Interaction between library and application ..27
3.2 State Transitions during API calls...29
3.3 Decode Flow in Applications Perspective...30

4 Example Lib Usage ...31
5 Debug Logs ...36

5.1 Logger Functions...37
6 Appendix ...38

6.1 Pre-fetch callback function implementation..38

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 5

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

1 Introduction
1.1 Purpose
This document gives the application programmer’s interface to H.264 baseline / MPEG-4 Part 10
decoder library.

1.2 Scope
This document does not give the detailed implementation of the decoder. It only explains the APIs
and data structures exposed to the application developer for using the decoder library

1.3 Audience Description
The reader is expected to have basic understanding of video processing and video coding standards.

1.4 References
1.4.1 Standards

1. Draft ITU-T Recommendation and Final Draft International Standard of Joint Video
Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC), JVT-G050r1.doc

2. Proposed Draft AVC|H.264 Conformance Spec, JVT-J011.doc

1.4.2 Freescale Multimedia References
3. H.264 Decoder Application Programming Interface – h264_dec_api.doc
4. H.264 Decoder Requirements Book - h264_dec_reqb.doc
5. H.264 Decoder Test Plan - h264_dec_test_plan.doc
6. H.264 Decoder Release notes - h264_dec_release_notes.doc
7. H.264 Decoder Test Results – h264_dec_test_results.doc
8. H.264 Decoder Performance Results – h264_dec_perf_results.doc
9. H.264 Decoder Interface Header – avcd_dec_api.h
10. H.264 Decoder Application Code – decoder.c

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 6

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

1.5 Definitions, Acronyms, and Abbreviations
TERM/ACRONYM DEFINITION

AVC Advanced Video Coding

API Application Programming Interface

ARM Advanced RISC Machine

DPB Decoded Picture Buffer

FSL Freescale

ISO International Standards Organization

ITU International Telecommunication Union

MPEG Moving Pictures Expert Group

NAL Network Abstraction Layer

PAF Parallelization Across Frames

RVDS ARM RealView Development Suite

UNIX Linux PC x/86 C-reference binaries

1.6 Document Location
docs/h264_dec

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 7

http://mephisto.ea.freescale.net/wsd/platform.html

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

2 API Description
This section describes the data structures followed by an example usage of the H.264 video
decoder. The decoder supports all the levels in the baseline profile, the user can however set a
default level (information used during memory allocation and in the decoder library) by setting the
parameter AVCD_DEFAULT_LEVEL_SUPPORT to the required level. The various levels and
their constraints are specified in [1.4.2-2].

2.1 Data Structures
This section describes the data structures used in the decoder interface.

2.1.1 sAVCDecoderConfig
This is the main data structure which should be passed to all the decoder functions. The definition
of the structure is given below.

typedef struct
{

long s32NumBytes;
unsigned short s32NalType;
void *pvInBuffer;
int s32FrameNumber;
long s32InBufferLength;

 void *pvAVCData;
 sAVCDConfigInfo sConfig;
 sAVCDMemAllocInfo sMemInfo;
 sAVCDYCbCrStruct sFrameData;
 int paf;
 unsigned char u8Status;
 void *pAppContext;
 int (*cbkAVCDBufRead) (unsigned char *pu8Buf,
 int s32BufLen,
 int *s32Last,
 void *pAppContext);
} sAVCDecoderConfig;

Description of structure sAVCDecoderConfig
s32NumBytes

Number of bytes in input buffer. This parameter is to be filled in by the application that is
passing the bitstream to the decoder.

S32NalType
Type of the NAL filled by the application

pvInBuffer
Pointer to Input Bit stream

s32FrameNumber
This denotes the frame that has been decoded recently.

s32InBufferLength
Size (in bytes) of input bitstream buffer determined by the application.

pvAVCData

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 8

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

This is an internal video frame context for the decoder and application should not change
this.

sConfig
A scalable data structure that provides useful information on the bitstream to the
application.

sMemInfo
This is memory information structure. This is described in sAVCDMemAllocInfo [2.1.2].

sFrameData
 Reconstructed frame Data (Y, Cb and Cr components).

paf
This flag is set by the library if PAF scheme is enabled.

u8Status
Flag indicating decoding status (complete or incomplete frame decode before copying the
reconstructed data to application space). This flag is set to ‘1’ when decoding of a frame is
completed. This along with the API return type, notify the application on when to render
the output frame.

pAppContext
Application specific data. The codec library will not edit this data. This will be given back
to the application during call back.

cbkAVCDBufRead
This is a synchronous call used by the decoder to read the bit stream from the application.
More detailed explanation is given later in the Input Buffer Interface [2.1.6]

2.1.2 sAVCDMemAllocInfo
This structures holds the information required for the memory management of the decoder. The
decoder memory requirements are passed to the application when eAVCDQueryMem and
eAVCDReQueryMem is called. The decoder specifies number of memory blocks needed by filling
s32NumReqs in this structure. Each valid entry in the array “asMemBlks” describes size and
properties of memory blocks required by the decoder. Application shall allocate the memory
required by looking at this structure before initializing the decoder.

typedef struct
 {
 int s32NumReqs;
 sAVCDMemBlock asMemBlks[MAX_NUM_MEM_REQS];
 int s32MinFrameBufferNum;
 } sAVCDMemAllocInfo;

Description of structure sAVCDMemAllocInfo
s32NumReqs

Number of memory blocks required. Decoder will set this to required value when
eAVCDQuerymem function is called.

asMemBlks
Array of memory block structure, for each request defined in s32NumReqs application

should allocate the memory. MAX_NUM_MEM_REQS is the
maximum number of memory chunk requests the decoder can make.
Currently it is set to 40.

s32MinFrameBufferNum

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 9

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

A integer number that indicates the minimum frame buffers that need by the decoder
during decoding, this value will be used for correctly creating the frame buffer manger.
This value will be got after invoking eAVCDReQueryMem ()

2.1.3 sAVCDMemBlock
This describes the memory block details such as size, type, etc.

typedef struct
{

int s32Size;
int s32Align;
int s32Type;
int s32Priority;
int s32SizeDependant;
int s32Allocate,
int s32Copy,
int s32MaxSize;
void *pvBuffer;

} sAVCDMemBlock;

Description of the structure sAVCDMemBlock
s32Size

The size of the memory required.
s32Align

The alignment of the memory block. It can be one of NO_ALIGNMENT, HALF_WORD,
or WORD_ALIGNED

s32Type
The Type of memory needed. It can be one of SLOW_SCRATCH, SLOW_STATIC,
FAST_SCRATCH, FAST_STATIC

s32Priority
Provides a guideline on the criticality of the memory block for performance. Priority “0” is
the highest.

s32SizeDependant
Indication if the parameter depends on size of frame. If this parameter is set then the size of
the element specified can dynamically between two consecutive frame decodes. If this is
set and the application does not choose to use the maximum size for the element
(s32MaxSize) then the application ‘re-queries’ the memory again when there is change in
any of the configuration parameters (frames size and/or number of reference frames)

s32Allocate
 Indicates that memory is required to be allocated if the application decides not to allocate
memory for the worst case. If not set to ‘1’, no memory is allocated.

s32Copy
 Indicates that the old contents in the memory needs to be copied before re-allocating the
memory.

s32MaxSize
Specifies the maximum possible size for the specified memory element. If application
chooses to use this instead of using s32Size then the application does not need to re-query
the memory again (occurs due to change of frames sizes and number of reference frames

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 10

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

used by the current decoded frame). This field is not to be used for memory allocation in
the current version of the software.

pvBuffer
This will be updated by the application based on the address of the allocated memory.

NOTE Size and alignment are mandatory specifications to the application, where as type
and priority helps the application to correctly allocate the memory. The s32MaxSize
should not be used for memory allocation in the current version of the software.

2.1.4 sAVCDYCbCrStruct
This Data structure encapsulates the decoded YCbCr buffer.

typedef struct
{
 unsigned char *pu8y,*pu8cb,*pu8cr;
 long s32FrameNumber;
 short s16FrameWidth;
 short s16FrameHeight;
 short s16Xsize;
 short s16CxSize;
 eAVCDOutputFormat eOutputFormat;
 int cropLeft_display;
 int cropTop_display;

} sAVCDYCbCrStruct;

Description of the structure sAVCDYCbCrStruct
pu8Y

Pointer to Output Y buffer (see figure 1)
pu8Cb

Pointer to Output Cb buffer
pu8Cr

Pointer to Output Cr buffer
s32FrameNumber

This element is used as a flag when DPB_FIX_APP is not defined with PAF scheme enabled
s16FrameWidth
 Frame width of the output frame.
s16FrameHeight

Frame height of the ouput frame.
s16Xsize

X dimension of y buffer. Should be greater than or equal to frameWidth. In case of UYVY
output this should be equal to the row buffer size (2*row pixels). This can be used to
remove the padded information and for cropping the video frame.

s16CxSize
X dimension of cb/cr buffer. Should be greater than or equal to frameWidth/2. Not used for
UYVY output format.

eOutputFormat

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 11

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Output format required from the library. This is a mandatory field that needs to be set
during the library initialization. [sec 2.2.3]

cropLeft_display
CropLeft_display provides information on the number of bytes to be cropped on the left
of the decoded video frame. This value is used by the test application to calculate the
pu8y, pu8cb and pu8cr pointers under the E_AVCD_420_PLANAR_PADDED output
format.

cropTop_display
CropTop_display provides information on the number of bytes to be cropped on the top
of the decoded video frame. This value is used by the test application to calculate the
pu8y, pu8cb and pu8cr pointers under the E_AVCD_420_PLANAR_PADDED output
format.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 12

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Figure 1: Storage format and pointers one output frame

Cx = cropLeft_display * 2 (for luma) and Cx = cropLeft_display (for Cb and Cr)
Cy = cropTop_display * 2 (for luma) and Cy = cropTop_display (for Cb and Cr)

In the above diagram, the value 16 vertically and horizontally specifies the pad. Similarly the value
8 for the Cb and Cr components.

To calculate the pointer with the pad(as shown in figure) the following relations can be used:

 f->pu8y - = ((16*f->s16Xsize) + 16)
 f->pu8cb - = ((8* (f->s16Xsize>>1)) + 8)

For calculating the padded height parameter (as indicated in the figure), after step computing the
above, padded_height = (f->pu8cb - f->pu8y) / f->s16Xsize.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 13

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

2.1.5 sAVCDConfigInfo
This Data structure contains width and height, this could be expanded in future to contain other
parameters when needed.

typedef struct
{
 short s16FrameWidth;
 short s16FrameHeight;
 short s16NumRefFrames;
 short s16Level;
 unsigned int u32MaxDPB;
}sAVCDConfigInfo;

Description of the structure sAVCDConfigInfo
s16FrameWidth

Frame width of the current decoded frame
s16FrameHeight

Frame height of the current decoded frame
s16NumRefFrames

Number reference frame used by the current decoded frame
s16Level

Level defined by the current bitstream
u32MaxDPB
 Max DPB supported for the corresponding level

2.1.6 Input buffer interface
cbkAVCDBufRead is a synchronous call used by the decoder to read the bit stream from the
application. This function is called by the decoder in eAVCDecodeNALUnit functions, when it runs
out of current bit stream buffer. This function is not part of the library and has to be supplied by the
user of the decoder library. Application developer has complete control in implementing this API
based on the system requirement.

Prototype:
int (*cbkAVCDBufRead) (unsigned char *pu8Buf,

int s32BufLen,
int* s32Last,
void* pAppContext);

Arguments:
• pu8Buf Pointer to the buffer.
• s32BufLen Number of bytes requested by the decoder.
• s32Last Set to ‘1’ by the application if the number of bytes for a NAL unit that is

being decoded is exhausted. If more data is present after the call back it
is set to ‘0’.

• pAppContext The application specific data which is given by the application during the
decode call and is give back to the application during this callback.

Return value:

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 14

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 Returns the size of the buffer copied else return -1 for failure

2.1.7 Pre-fetch NAL interface
For accelerating the decoder, a Pre-fetch NAL data scheme is used. It’s an additional scheme which
means decoder’s performance will be improved if Application utilized this scheme. And if
Application didn’t adopt this scheme the decoder functionality will be kept as same except
performance will be degraded a little.

There are 2 types of call back function pointer are used:

• cbkAVCDPrefetchNAL

• cbkAVCDLengthSetter

cbkAVCDPrefetchNAL is a function pointer type whose instance is a synchronous call used by the
decoder to pre-fetch the encoded bit stream from the application. This function is called by the
decoder when it runs out of current bit stream buffer.
By using this function, decoder can reuse the NAL buffer which is provided by application directly.
Comparing with the cbkAVCDBufRead method which is described in section 2.1.6, this pre-fetch
method can avoid memory copy inside decoder.

This function is not part of the library and has to be supplied by the user of the decoder library.
Application developer has complete control in implementing this API based on the system
requirement.

Prototype:
typedef int (*cbkAVCDPrefetchNAL)(unsigned char **ppbuf, int *len);

Arguments:
• ppbuf Pointer of Pointer to the NAL buffer which is provided by the

application.
• len Number of bytes requested by the decoder.

Return value:
Returns 0 for success or return -1 for failure

cbkAVCDLengthSetter is a function pointer type whose instance is a synchronous call used by the
decoder to inform Application the length change of NAL buffer after decoder pre-fetched NAL.
This function is not part of the library and has to be supplied by the user of the decoder library.
Application developer has complete control in implementing this API based on the system
requirement.

Prototype:
typedef void (*cbkAVCDLengthSetter)(int len_after_destuff);

Arguments:
• len_after_destuff the buffer length after destuff process which is performed after

NAL data fetching

Return value:

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 15

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

N/A

Instances of these 2 function pointer type will be registered into decoder via an API functions
named eAVCDSetNALFuncs. This step should be performed after application initialized decoder via
eAVCDInitQueryMem. The detailed procedure will be provided in later section.
Example implementations of these 2 pre-fetch functions are provided in Appendix (section 0).

2.1.8 sAVCDNAL_FUNCs
This Data structure contains 2 functions that described in the previous section 2.1.7, and will be
used to register application implemented functions into decoder.
typedef struct _NAL_FUNC
{
 cbkAVCDPrefetchNAL NALFetcher;
 cbkAVCDLengthSetter NALLengthSetter;
}sAVCDNAL_FUNCs;

Description of the structure sAVCDNAL_FUNCs
NALFetcher

A function pointer which will be used by decoder to fetch NAL data
NALLengthSetter

A function pointer which will be used by decoder to inform application the buffer length
after destuff process which is performed after NAL data fetching

2.2 Enumerations and Typedefs

2.2.1 Library API Return codes
typedef enum
{
 //!< Successful Completion
 E_AVCD_NOERROR = 0,
 E_AVCD_INIT,
 E_AVCD_QUERY,
 E_AVCD_SEQ_CHANGE,
 E_AVCD_CHANGE_SERVICED,
 E_AVCD_FF,
 E_AVCD_FLUSH_STATE,

 //!< Recoverable Errors, warnings and information
 E_AVCD_NOT_SUPPORTED,
 E_AVCD_BAD_PARAMETER,
 E_AVCD_BAD_DATA_PTR ,
 E_AVCD_NOMEM,
 E_AVCD_NO_FRAME_BUFFER_CHANGE,
 E_AVCD_FRAME_BUFFER_CHANGE,
 E_AVCD_NO_OUTPUT,
 E_AVCD_NULL_POINTER,
 E_AVCD_BAD_DATA,
 E_AVCD_OUTPUT_FORMAT_NOT_SUPPORTED,
 E_NO_PICTURE_PAR_SET_NAL,

E_NO_SEQUENCE_PAR_SET_NAL
E_AVCD_DEMO_PROTECT,

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 16

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

//!< Irrecoverable Errors
E_AVCD_CODEC_TYPE_NOT_SUPPORTED,

 E_AVCD_INVALID_PARAMETER_SET,
 E_AVCD_UNKNOWN_ERROR = 127,
}eAVCDRetType;

Return type Error Type Comments
E_AVCD_NOERROR None The function execution is successful.
E_AVCD_INIT None The decoder is initialized and is ready for doing

operations.
E_AVCD_QUERY None This state refers to that querying for the initial

memory requirement is completed and the
application has to allocate the required memory

E_AVCD_SEQ_CHANGE None This state is returned when there is a change in any
of the configuration parameter that would warrant
changes in the memory requirements during the
decoding. Application needs to ‘re-query’ the
memory for re-allocation if the maximum memory
for the default level is not allotted.

E_AVCD_CHANGE_
SERVICED

None This state is returned when ‘re-query’ is done and
the new memory requirement is returned to the
application. The application has to allocate the
required memory if hasn’t chosen to allocate the
maximum memory requirement for the supported
level.

E_AVCD_FF None This state is referred if the user opts for FF of
frame(s). Once an IDR frame is encountered the
state automatically switches to E_AVCD_PLAY
from this state.

E_AVCD_FLUSH_STATE None This state is returned when DPB is full and one or
more decoded frames have to be flushed from
DPB. The decoder has to be fed with the same
NALU as far as this state is returned.

E_AVCD_NOT_
SUPPORTED

Recoverable Level specified by the bitstream is not supported

E_AVCD_CODEC_TYPE_NO
T_SUPPORTED

Irrecoverable Unsupported codec type

E_AVCD_BAD_
PARAMETER

Recoverable Invalid parameter(s)

E_AVCD_BAD_DATA_
PTR

Recoverable Invalid memory for data pointer.

E_AVCD_NOMEM Recoverable Not enough memory for decoding
E_AVCD_NO_FRAME_
BUFFER_CHANGE

Recoverable Information that no buffer changes are required

E_AVCD_FRAME_
BUFFER_CHANGE

Recoverable Warning that buffer changes occurred and handling
required

E_AVCD_NO_OUTPUT Recoverable Successful decoding but output not generated
E_AVCD_NULL_POINTER Recoverable Buffers are not allocated as requested
E_AVCD_OUTPUT_FORMA
T_NOT_SUPPORTED

Recoverable Output format expected is not supported

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 17

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

E_NO_PICTURE_PAR_SET_
NAL

Recoverable When decoder tries to decode a NAL, decoder
found that there is not a Picture Parameter NAL
decoded previously.
Application can just treat this error as met a
E_AVCD_NO_OUTPUT

E_NO_SEQUENCE_PAR_SE
T_NAL

Recoverable When decoder tries to decode a NAL, decoder
found that there is not a Sequence Parameter NAL
decoded previously.
Application can just treat this error as met a
E_AVCD_NO_OUTPUT

E_AVCD_BAD_DATA Recoverable When decoder detects the error which can be
handled, it try to decode current NAL, the output
frame data is not correct, when the frame is
outputted, API return E_AVCD_BAD_DATA,
application decide to display the frame or not

E_AVCD_INVALID_
PARAMETER_SET

Irrecoverable Invalid Pic/Seq param set

E_AVCD_UNKNOWN_
ERROR

Irrecoverable Some Unknown error

E_AVCD_DEMO_PROTECT Recoverable Only for demo protection version, when the
decoded frame count is greater than 9000,codec
always return E_AVCD_DEMO_PROTECT

2.2.2 Alignment definitions
typedef enum
{
 E_AVCD_BYTE_ALIGN = 0,
 E_AVCD_HALFWORD_ALIGN,
 E_AVCD_THIRDBYTE_ALIGN,
 E_AVCD_WORD_ALIGN,
}eAVCDAlign;

Return type Comments
E_AVCD_BYTE_ALIGN No alignment required
E_AVCD_HALFWORD_ALIGN Alignment to the second byte in the word
E_AVCD_THIRDBYTE_ALIGN Alignment to the third byte in the word
E_AVCD_WORD_ALIGN Alignment to the word boundary

2.2.3 Output format definitions

This enum specifies the output format required.

typedef enum
{
 E_AVCD_420_PLANAR = 0,
 E_AVCD_420_PLANAR_PADDED,
 E_AVCD_422_UYVY
}eAVCDOutputFormat;

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 18

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

2.2.4 Buffer getter
Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding. A
function which is implemented by the application (frame work) will be used to perform getting a
frame buffer for decoding.

Prototype:
typedef void* (*bufferGetter)(void* /*pvAppContext*/);
Arguments:
• Application context

Return value:
• A frame buffer

2.2.5 Buffer Rejecter
Since the Direct Rendering is adopted, the decoder will ask to get a new buffer for decoding.
It’s possible that the gotten frame buffer may be refused by the decoder. Decoder need to inform
the application (framework) that this frame is rejected.
A function which is implemented by the application (frame work) will be used to perform reject ion
of a frame buffer.

Prototype:
typedef void (*bufferRejecter)(void* /*mem_ptr*/, void*
/*pvAppContext*/);
Arguments:
• A rejected frame buffer

• Application context

Return value:
• None

2.2.6 Buffer Manager
For clarifying the concept and simplifying the API, we group the 2 function pointer we described
above into a structure named DR_BufferManager:

typedef struct _AVCD_FrameManager
{
 bufferGetter BfGetter;
 bufferRejecter BfRejector;
}AVCD_FrameManager;

2.2.7 Deblock Option
Since the IC may or may not has HW deblock function, this H264 decoder offer functions to check
and set the deblock options of the decoder.
typedef enum
{
 E_AVCD_SW_DEBLOCK = 0,

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 19

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 E_AVCD_HW_DEBLOCK,
}eAVCDDeblockOption;

Deblock type Comments
E_AVCD_SW_DEBLOCK Use Software Deblock
E_AVCD_HW_DEBLOCK Use Hardware Deblock

2.2.8 Buffer Releaser
Since the Direct Rendering is adopted, the decoder is responsible to release an unused buffer got by
buffer getter, the application(frame work) will reclaim this buffer from decoder. A function which
is implemented by the application (frame work) will be used to perform releasing a frame buffer
from decoding.

Prototype:
typedef void (*bufferReleaser)(void* /*mem_ptr*/, void*
/*pvAppContext*/);
Arguments:
• A released frame buffer

• Application context

Return value:
• None

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 20

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Application Programmer Interface Functions

2.2.9 Query Memory
This is the first function to be called by the application. This function sets the initial memory
requirement of the decoder. The decoder does not parse the bit stream to determine the values to
populate the memory structures. This call would set the maximum memory for a given level for all
the decoder components defined in the memory structure. It also sets a flag (for each of the
component) whether the memory requirement is subject to change during the process of decode. It
also sets the actual sizes for each of the component. For components where sizes do not change
during the actual decode, the actual size and the maximum size are the same, if different the actual
sizes are known during ‘re-querying’ of the memory explained in 2.3.3. The application allocates
the requested blocks of memory using the information from the decoder memory structure.

Prototype:
 eAVCDecRetType eAVCDInitQuerymem (sAVCDMemAllocInfo *psMemPtr);

Arguments:

• psMemPtr Memory requirement structure for the decoder.

Return value:
eAVCDecRetType
 Specifies whether assignment of parameters needed for memory allocation was successful

or not. Enumeration is described in the above section. Return values are -
 E_AVCD_QUERY - Function successful.
 Other values - Error

2.2.10 Query Physical Memory Address
This interface is for eLinux BSP only, Since IPU is used to de-block picture, PF driver is called and
need implementation in codec library. application will prepare memory,

2.2.11 Initialization
All initializations required for the decoder are done in eAVCDInitVideoDecoder. The output format
required should be set appropriately. This function must be called before the main decoder
functions are invoked.

Prototype:
eAVCDecRetType eAVCDInitVideoDecoder (sAVCDecoderConfig *psAVCDec);

Arguments:
• psAVCDec Decoder object pointer.

Return value:
 eAVCDecRetType

Specifies whether decoder has been successfully initialized or not.
 Enumeration is described in the above section. Return values are -
 E_AVCD_INIT - Function successful.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 21

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 Other values - Error

2.2.12 ReQuery Memory
This function is called by the application when the decoder detects a change in the configuration
(frame size or number of frames) during frame decode. In these scenarios the decoder exits out with
the required information (as contained in the configuration information structure in section 2.1.5)
and the application reallocates the required memory after calling this routine. If the maximum
memory is already allocated after the initial query (for the decoded level), then the application does
not need do any reallocation.

Prototype:

 eAVCDecRetType eAVCDReQueryMem (sAVCDecoderConfig *psAVCDec)

Arguments:
• psAVCDec Decoder object pointer.

Return value:
eAVCDecRetType
 Specifies whether frames were decoded successfully or not.
 Enumeration is described in the above section. Return values are -
 E_AVCD_NOERROR - Function successful.
 Other values - Error

2.2.13 Register NAL pre-fetch callback functions
This function is optional which means application make choice that if it will use this function.
Decoder’s performance will be improved if Application utilized this scheme. And if Application
didn’t adopt this scheme the decoder functionality will be kept as same except performance will be
dropt a little.

This function is called by the application after decoder initialization. The detailed procedure is:

• Application should prepare those 2 NAL pre-fetch functions that described in section 2.1.7.
• Then pack these 2 NAL pre-fetch functions into a sAVCDNAL_FUNCs structure as described

in 2.1.8.
• Invoke this function whit the sAVCDNAL_FUNCs structure.

Prototype:

 void eAVCDSetNALFuncs(sAVCDNAL_FUNCs *pNalFuncs);

Arguments:
• pNalFuncs pointer to a structure which is used to pack pre-fetch functions.

Return value:
None

2.2.14 Decode
The main decoder function is eAVCDecodeNALUnit. This function decodes the H264 bit stream in
the input buffers to generate one frame of decoder output every call. The decoded output

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 22

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

parameters are populated on the structure elements of sAVCDYCbCrStruct. Decoded output buffer
pointers are populated on structure elements pu8y, pu8cb and pu8cr. The decoded buffer would
have padded video frame. The horizontal size of padded frame is s16Xsize. The actual horizontal
size of the video frame is populated on the structure element s16FrameWidth and the actual height
is populated on s16FrameHeight. The cropping left and top offset for chroma is populated on
cropLeft_display and cropTop_display respectively.

Prototype:
eAVCDecRetType eAVCDecodeNALUnit (sAVCDecoderConfig *psAVCDec, unsigned
char u8FastForwardFlag);

Arguments:
• psAVCDec Decoder object pointer.
• u8FastForwardFlag Fast forward is ON/OFF.

Return value:
eAVCDecRetType
 Specifies whether frames were decoded successfully or not.

Enumeration is described in the above section. Return values are -
 E_AVCD_NOERROR - Frame Decode successfully completed.

E_AVCD_FLUSH_STATE – Input NALU provided not decoded. One frame data is
outputted.

 Other values - Error/Warnings/Information (for more details please refer
 to section 2.2.1.

Note:
When fast forward is set, this API skips to an Intra Refresh Frame in the decoded stream. At the
start of video coding layer, the NAL unit type is decoded and examined for the identity of the slice
to be encoded. If the slice is not an IDR frame, the NAL unit is not decoded and the control shifts
back to the application for getting a new NAL unit. Once an IDR frame is detected it is decoded
and the return type is changed from E_AVCD_FF to E_AVCD_PLAY. In this scenario the
application should examine the return type of the decoder (assuming application stores previous
state) and determines whether to fast forward further or reset the ‘u8FastForwardFlag’ to 0 (for
regular decode).

2.2.15 Output Frame
eAVCDGetFrame is an optional API which the application can use to copy the decoded video
frame data in to a buffer allocated by the application. The pointers to the buffer allocated by the
application must be populated on the structure elements of sAVCDYCbCrStruct (pu8y, pu8cb and
pu8cr). This API will copy the cropped video frame to this output buffer. This API need not be used
if the application can handle cropping of video data using hardware.
This API will not be invoked when eAVCDOutputFormat [sec 2.2.3] is set to
“E_AVCD_420_PLANAR_PADDED” (see sample test application).
The current release doesnot support the output format eAVCDOutputFormat E_AVCD_422_UYVY.

Prototype:
void eAVCDGetFrame(sAVCDecoderConfig *psVDec)

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 23

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

• psVDec Pointer to the decoder structure which in turn uses the pointers by test
application.

2.2.16 Output Flush
This function is to be called after the input stream is completely decoded and before freeing the
decoder. This function should be called repeatedly until E_AVCD_NO_OUTPUT is returned. The
output frames would be in the psAVCDec->sFrameData and should be displayed before the next
eAVCDecoderFlushAll call.

Prototype:
eAVCDecRetType eAVCDecoderFlushAll (sAVCDecoderConfig *psAVCDec);

Arguments:
• psAVCDec Decoder object pointer.

Return value:
eAVCDecRetType
 Specifies whether frames are there for output or not.

Enumeration is described in the above section. Return values are -
 E_AVCD_NOERROR - Frames present for display
 E_AVCD_NO_OUTPUT - No more frames for display

2.2.17 Free Decoder
This is the decoder function to release any resources used by the decoder.

Prototype:
eAVCDecRetType eAVCDFreeVideoDecoder (sAVCDecoderConfig *psAVCDer);

Arguments:
• psAVCDec Decoder object pointer.

Return value:
eAVCDecRetType
 Specifies whether the decoding resources are freed.
 Enumeration is described in the above section. Return values are -
 E_AVCD_NO_OUTPUT - Function successful.
 Other values - Error

2.2.18 Set a Buffer Manager
As section 2.2.4, 2.2.5 and 2.2.6 mentioned, a buffer manager is needed for DR. This object should
be set by the application (frame work) before decoding.
The function specified below is used to set the buffer manager.

Prototype:

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 24

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

void AVCDSetBufferManager (sAVCDecoderConfig *psAVCDec,
AVCD_FrameManager* manager);

Arguments:

• psAVCDec Pointer to sAVCDecoderConfig
• manager a pointer to a frame buffer manager which is used to get and

reject buffer.

Return value:
None

2.2.19 Set Deblock option
This function can be used to set the deblock option(Hardware or Software).

Prototype:
void AVCDSetDeblockOption(sAVCDecoderConfig *psAVCDec,
eAVCDDeblockOption deblockOption);

Arguments:

• psAVCDec Pointer to sAVCDecoderConfig
• deblockOption indicate whether us.HW or SW deblock

Return value:
None

2.2.20 Get Deblock option
This function can be used to check the deblock option(Hardware or Software) that currently used
by decoder.

Prototype:
eAVCDDeblockOption AVCDGetDeblockOption(sAVCDecoderConfig
*psAVCDec);

Arguments:

• psAVCDec Pointer to sAVCDecoderConfig

Return value:
E_AVCD_SW_DEBLOCK(0) using SW deblock
E_AVCD_HW_DEBLOCK(1) using HW deblock

2.2.21 Callback type definitions
typedef enum
{
 E_GET_FRAME =0,
 E_REJECT_FRAME,

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 25

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 E_RELEASE_FRAME
} eCallbackType;

Callback type Comments
E_GET_FRAME Set callback to get DR buffer
E_REJECT_FRAME Set callback to reject DR buffer
E_RELEASE_FRAME Set callback to release DR buffer

typedef enum
{
 E_CB_SET_OK =0,
 E_CB_SET_FAIL,
} eCallbackSetRet;

Callback return type Comments
E_CB_SET_OK Set callback successfully
E_CB_SET_FAIL Fail to set callback

2.2.22 Set Callback function
As a additional method for DR buffer management. This object should be set by the application
(frame work) before decoding.
The function specified below is used to set the buffer manager.

Prototype:
eCallbackSetRet
H264SetAdditionalCallbackFunction (sAVCDecoderConfig *psAVCDec,
eCallbackType funcType, void* cbFunc);

Arguments:

• psAVCDec Pointer to sAVCDecoderConfig
• funcType Indicate the function type
• cbFunc Pointer to a callback function

Return value:
E_CB_SET_OK set callback function successfully
E_CB_SET_FAIL failed

2.2.23 Query decoder version
The feature to query h264 decoder version is supported through an API function, once application
call the function, decoder always return the corresponding version information. The version format
includes codec type, OS type, Demo type, and build time. For example:

H264D_ARM11_02.03.00_DEMO build on Jun 13 2008 13:01:27

Prototype:
const char * H264DCodecVersionInfo();
Arguments: void.
Return value: void.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 26

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

3 Application Notes
3.1 Interaction between library and application
The following figure explains the various stages of the decoder, the various states it undergoes
through and it’s interaction with the application. This is applicable for any application that uses the
H.264 library. Please note that the sample test application provided reads bitstreams that have their
NALs encapsulated as specified in Annex B of AVC decoder specification [2].

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 27

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

Decoder Application Decoder Library

QueryMemory
Set required memory flags and
maximum sizes for the
supported level

Decode NAL unit
Parse and decode the
bitstream, if sequence change
is detected and not taken care
of, return immediately. If DPB
is full output a frame.

Reset all pointers and the
required parameters

E_AVCD_PLAY

E_AVCD_SEQ_CHANGE

Free Decoder Resources
Release all the memory
resources

Output Flush
Flush the remaining frames
available in the decoder for
display

Return frames that were held
in DPB which were not
displayed

E_AVCD_FLUSH_STATE

IInitial Allocate Memory
Take decision whether to allocate
maximum memory or only
allocate memory to size
independent parameters

Initialize Decoder

Register Pre-fetch functions (optional)
Register Pre-fetch functions (optional)

Figure 2. Interactions between Decoder Library and Application during a normal
decode process

Initialize the required internal
parameters and structures.

Initialize the required internal
parameters and structures.

E_AVCD_INIT

Optional

Read a NAL unit

E_AVCD_CHANGE_
SERVICED

Re-Query Memory
Reallocate Memory if
maximum memory allotment
is not used and if the memory
element is size dependant. Do
not increment bitstream
pointer, the same data is
passed

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 28

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

3.2 State Transitions during API calls

The following state diagrams explain the state transitions in the decoder library and the
application

Initial
Query

Decoder
Initialization

NAL

Decode

Re-Query
Memory

NAL Fast
Forward

End of
Decode

E_AVCD_QUERY

E_AVCD_INIT

E_AVCD_PLAY

E_AVCD_FF

E_AVCD_SEQ_CHANGE

E_AVCD_CHANGE_SERVICED

E_AVCD_PLAY

E_AVCD_FF

Output
Flush

output a
frame

E_AVCD_FLUSH_STATE

Figure 3. State Machine Indicating the State Changes when APIs are Called

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 29

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

3.3 Decode Flow in Applications Perspective
Start

Query Memory for
Requirement

Initialize Decoder

Decision == MAX
MEMORY

Allocate Maximum
Memory for all elements

Allocate memory only for
size dependent elements

Application provides number of bytes in the NAL and reads the
NAL unit to the video decoder

No Data (End of
Bitstream)

Decode NAL

Configuration
Change Detected

Decision ==
MAX MEMORY

Re-Query Memory

End

Y N

Y

N
Y

N

Y

Re-Allocate Memory for the size
dependent Parameters

Output
Flush

More
Frames?

Y
N

DPB full? Output a
Frame

Y

N

End
N

Output
Flush

Register Pre-fetch functions (optional)

Figure 4. Application Program Flow

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 30

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

4 Example Lib Usage

This example shows how to use the H.264/AVC Decoder library. Before calling the decoder, we
call the decoder initialization function, eAVCDInitVideoDecoder. This function initializes the
decoder. The main decode function is called in a loop. The encoded bit stream is fed through
cbkAppBufRead function.

Please note that the error handling is not shown properly and the code may not compile as it is.
Also, few places only one component is set, while the application need to set for all of the
components.

Note: This example shows the basic implementation. The same may not have updated with any
change in decoder API/ structures. “decoder.c” [10] illustrates implementation of sample test application.

void main()
{
/******* portion of the application code ********/

/* Before calling initialization routine call QueryMem to return the size
and the type of the memory needed by the decoder, assume that the
bitBuffer contains the initial portion if bitstream and bufLen contains
the length. The application needs to register the callback function and
set the output format*/

 eStatus = eAVCDInitQueryMem (&vdec.sMemInfo);
 InitalizeAppMemory(&vdec.sMemInfo);

/* Give memory to the decoder for the size, type and alignment returned
*/
 AppAllocMemory(&vdec.sMemInfo);

/* Initialize the decoder. */
 eStatus = eAVCDInitVideoDecoder(&vdec);

/* Decode the bit stream and produce the outputs */
while (1)
{
 vdec.s32NumBytes =
 IO_GetNalUnitAnnexB(&ioPars, vdec.pvInBuffer,
 vdec.s32InBufferLength);
/8 IO_GetNalUnitAnnexB is implemented by the application*/

/* H264 decoder call. Returns after decoding a NAL unit*/
 eStatus = eAVCDecodeNALUnit(&vdec, ff_flag);

 if (eStatus == E_AVCD_SEQ_CHANGE)
 {
 eStatus = eAVCDReQueryMem(&vdec);

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 31

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 Appallocmemory_1(&vdec.sMemInfo);
 }
}
 if ((vdec.sConfig.s16FrameWidth != 0) ||
 (vdec.sConfig.s16FrameHeight != 0))
 {
 AllocateFrameMemory(&vdec.sFrameData, &vdec.sConfig);
 ff_flag = 0;
 }

 if ((eStatus == E_AVCD_NOERROR) || (eStatus == E_AVCD_FLUSH_STATE))
 {
 if(vdec.sFrameData.eOutputFormat != E_AVCD_420_PLANAR_PADDED)
 eAVCDGetFrame (&vdec);
 WriteOutput(eStatus, &ioPars, vdec);
 }
}

 while(eStatus == E_AVCD_NOERROR)
 {
 eStatus=eAVCDecoderFlushAll(&vdec);
 if(eStatus == E_AVCD_NOERROR)
 {
 if(vdec.sFrameData.eOutputFormat != E_AVCD_420_PLANAR_PADDED)
 eAVCDGetFrame (&vdec);

 WriteOutput(eStatus, &ioPars, vdec);
 }
 }
/*Free the decoder*/
 FreeDecoderMemory(&vdec.sMemInfo);
 return 0;
}

void AppAllocMemory(sAVCDMemAllocInfo *psMemPtr)
{
 int s32Count, maxNumReqs;

 maxNumReqs = psMemPtr->s32NumReqs;

 for (s32Count = 0; s32Count < maxNumReqs; s32Count++)
 {
 if (psMemPtr->asMemBlks[s32Count].s32Allocate == 1)
 {
 psMemPtr->asMemBlks[s32Count].pvBuffer = \
 MALLOC(psMemPtr->asMemBlks[s32Count].s32Size);
 }
 }
}

void AppAllocMemory_1(sAVCDMemAllocInfo *psMemPtr)
{
 int s32Count, maxNumReqs;

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 32

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 maxNumReqs = psMemPtr->s32NumReqs;

 for (s32Count = 0; s32Count < maxNumReqs; s32Count++)
 {
 if (psMemPtr->asMemBlks[s32Count].s32SizeDependant == 1 &&
 psMemPtr->asMemBlks[s32Count].s32Allocate == 1)
 {
 if ((psMemPtr->asMemBlks[s32Count].pvBuffer != NULL) &&
 (psMemPtr->asMemBlks[s32Count].s32Copy == 1))
 {
 psMemPtr->asMemBlks[s32Count].pvBuffer =
 REALLOC(psMemPtr->asMemBlks[s32Count].pvBuffer,
 psMemPtr->asMemBlks[s32Count].s32Size);
 }
 else
 {
 if(psMemPtr->asMemBlks[s32Count].pvBuffer)
 {
 free(psMemPtr->asMemBlks[s32Count].pvBuffer);
 }
 psMemPtr->asMemBlks[s32Count].pvBuffer = \
 MALLOC(psMemPtr->asMemBlks[s32Count].s32Size);
 }
 }
 }
}

void AllocateFrameMemory(sAVCDYCbCrStruct *psFrame, sAVCDConfigInfo
*pConfig)
{
 int s32Xsize, s32Ysize, s32Cysize, s32Cxsize;
 if (psFrame->pu8y != NULL)
 free(psFrame->pu8y);
 if (psFrame->pu8cb != NULL)
 free(psFrame->pu8cb);
 if (psFrame->pu8cr != NULL)
 free(psFrame->pu8cr);

 // Allocate memory to the frames
 switch (psFrame->eOutputFormat)
 {
 case E_AVCD_420_PLANAR:

 psFrame->s16Xsize = (pConfig->s16FrameWidth);
 s32Xsize = psFrame->s16Xsize;
 s32Ysize = (pConfig->s16FrameHeight);
 psFrame->s16CxSize = psFrame->s16Xsize >> 1;
 s32Cysize = s32Ysize >> 1;
 s32Cxsize = psFrame->s16CxSize;
 psFrame->pu8y =(unsigned char*) MALLOC(s32Xsize * s32Ysize
 * sizeof (char));
 psFrame->pu8cb =(unsigned char*) MALLOC(s32Cxsize * s32Cysize

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 33

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 * sizeof (char));
 psFrame->pu8cr =(unsigned char*) MALLOC(s32Cxsize * s32Cysize
 * sizeof (char));
 if(psFrame->pu8y==NULL)
 {
 printf("Failed to allocate output buffer(Y)\n");
 exit(0);
 }
 if(psFrame->pu8cb==NULL)
 {
 printf("Failed to allocate output buffer(U)\n");
 exit(0);
 }
 if(psFrame->pu8cr==NULL)
 {
 printf("Failed to allocate output buffer(V)\n");
 exit(0);
 }
 break;

 case E_AVCD_420_PLANAR_PADDED:
 psFrame->s16Xsize = (pConfig->s16FrameWidth);
 s32Xsize = psFrame->s16Xsize;
 s32Ysize = (pConfig->s16FrameHeight);
 psFrame->s16CxSize = psFrame->s16Xsize >> 1;
 s32Cysize = s32Ysize >> 1;
 s32Cxsize = psFrame->s16CxSize;
 psFrame->pu8y = NULL;
 psFrame->pu8cb = NULL;
 psFrame->pu8cr = NULL;
 break;

 case E_AVCD_422_UYVY:
 psFrame->s16Xsize = (pConfig->s16FrameWidth)*2;
 s32Xsize = psFrame->s16Xsize;
 s32Ysize = (pConfig->s16FrameHeight);
 psFrame->pu8y =(unsigned char*) malloc(s32Xsize * s32Ysize*
sizeof (char));
 if(psFrame->pu8y==NULL)
 {
 printf("Failed to allocate output buffer(YUV)\n");
 exit(0);
 }

 psFrame->pu8cb = NULL;
 psFrame->pu8cr = NULL;
 break;

 }
}

void FreeDecoderMemory(sAVCDMemAllocInfo *psMemPtr)
{

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 34

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

 int s32Count, maxNumReqs = psMemPtr->s32NumReqs;

 for (s32Count = 0; s32Count < maxNumReqs; s32Count++)
 {
 if (psMemPtr->asMemBlks[s32Count].pvBuffer != NULL)
 {
 free(psMemPtr->asMemBlks[s32Count].pvBuffer);
 }
 }
}

void FreeFrameMemory(sAVCDYCbCrStruct *psFrame)
{
 if ((psFrame->eOutputFormat == E_AVCD_422_UYVY) || (psFrame-
>eOutputFormat == E_AVCD_420_PLANAR))
 {
 if (psFrame->pu8y != NULL)
 free(psFrame->pu8y);
 if (psFrame->eOutputFormat == E_AVCD_420_PLANAR)
 {
 if (psFrame->pu8cb != NULL)
 free(psFrame->pu8cb);
 if (psFrame->pu8cr != NULL)
 free(psFrame->pu8cr);
 }
 }
}

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 35

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

5 Debug Logs
The purpose of providing the developer with useful information that not only could be used during
debugging the library but also to understand the dataflow in H.264 video encoder. These logs are
classified into four categories namely DebugLog1, DebugLog2, DebugLog3 and DebugLog4
according to the level of hierarchy that is addressed. The hierarchies addressed by the logs are
shown in Table 1 below

Table 1. Hierarchical levels used for Debug Logs

Type of Log Functionality
Addressed

Module ID Examples

DebugLog1
(DEBUG_1)

Sequence, Picture
and API
Parameters

INTERFACE,
SEQUENCE,
PICTURE,
BITSTREAM

Sequence Parameter, Picture
Parameters, type of NAL etc.

DebugLog2
(DEBUG_2)

VOP Level
Parameters

PSLICE, ISLICE,
ERRORC,
MEMMGT,
BITSTREAM,
DEBLOCK

Frame type, Macroblocks types in a
frame, Quantization parameters in a
frame etc.

DebugLog3
(DEBUG_3)

Macroblock level
parameters

PSLICE, ISLICE,
BITSTREAM,

Macroblock type, coded bit pattern,
etc.

DebugLog4
(DEBUG_4)

Block level
Parameters

PSLICE, ISLICE,
BITSTREAM, MISC,
BITSTREAM

Paths relating to block coefficients,
runs, levels etc.

Enumerations are defined and provided in a separate header file for the user to view the various
types of information that could be logged using the given debug APIs. These enumerations specify
both the module level and the message type that are to be logged. Using the debug logs judiciously
inside the implementation, messages are generated in an ordered form. The types of message types
for each of the module used in the current version of the encoder are as shown in Table 2.

Table 2. Message Types in each of the Hierarchies

Message Type Comments
Message Identity
(MSGIDS_START)

States the start of message logging for a given
function

Function Information
(FN_INFO)

Generic information of the function, for e.g.,
function entry/exit, information on the I/O etc.

General Information
(GENERAL_INFO)

Information and values of various processing
steps and parameters that a function executes.

End of Message Identity
(MSGIDS_END)

Flags the end of the messages in a function.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 36

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

5.1 Logger Functions
The H264 decoder does not have any logger function to the log the text and data information by
itself. The logger function must be provided by the application to the library through function
interface AVCD_Register_Debug_Funcptr. The logger functions are passed as arguments to this
function. This function must be called before calling any other H264 decoder interface functions. If
this function is not called by the application, then the H264 decoder considers the Debug Level as
inactive.

The function prototype for AVCD_Register_Debug_Funcptr is as below.

C prototype:

void AVCD_Register_Debug_Funcptr (\
int (*text_debug_ptr)(short int msgid,char *fmt,...), \
int (*data_debug_ptr)(short int msgid,void *ptr,int size));

Arguments:
• text_debug_ptr - Text Debug Log function pointer.
• data_debug_ptr - Data Debug Log function pointer.

Return Value:
 None

There are two logger functions which are used to log the text and data respectively.
1. DebugLogText (short int msgid, char *fmt, ...)

Where, msgid is used to identify the module and the action required.

 fmt is a character string with the format same as “printf()” in ‘C’.

2. DebugLogData (short int msgid, int size, void *ptr)
 where size - size of data in bytes.
 ptr - pointer of data to be logged.

In addition another added capability of the provided logs is the specific debug API for providing
function entry/exit points in the logged data. The current version of implementation treats this very
similar to that of the debug log text. This is because of the fact that API is primarily used just to
denote whether functions that are entered are executed in total without encountering any problems.

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 37

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

6 Appendix

6.1 Pre-fetch callback function implementation
Here are example implementations of Pre-fetch functions that are mentioned in section 2.1.7

#define MAX_NAL_LEN 2100000

// Application buffers 2 NAL
UCHAR NALBuffer[2][MAX_NAL_LEN];
int current_nal_index = -1;//Which NALBuffer is used
int NALBufferBytes[2];//Length of NALBuffer
int NALDeStuffed[2];//NAL destuffed flag

int PrefetchNAL(UCHAR **pbuf, int *len)
{
 int prefetch_nal_index;
 if(current_nal_index == 0)
 prefetch_nal_index = 1;
 else
 prefetch_nal_index = 0;

 *len = NALBufferBytes[prefetch_nal_index];
 *pbuf = NALBuffer[prefetch_nal_index];

 if(*len == 0)
 return -1;
 else
 return 0;//ok
}
void SetPrefetchNALLength(int len_after_destuff)
{
 int prefetch_nal_index;
 if(current_nal_index == 0)
 prefetch_nal_index = 1;
 else
 prefetch_nal_index = 0;

 NALBufferBytes[prefetch_nal_index] = len_after_destuff;
 NALDeStuffed[prefetch_nal_index] = 1;
}
void init_NAL_buffers() /*which is invoked by application to initialize the NAL
buffer*/
{
 current_nal_index = 0;
 NALBufferBytes[0] = NALBufferBytes[1] = 0;
 NALDeStuffed[0] = NALDeStuffed[1] = 0;
}

void read_nal(int index) /*which is invoked by application to prepare NAL data*/
{
 NALBufferBytes[index] = IO_GetNalUnitAnnexB(&ioPars, NALBuffer[index],
MAX_NAL_LEN);
 NALDeStuffed[index] = 0;
}

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 38

Application Programmers Interface for H.264/AVC Decoder 08-6354-SIS-ZCH66

© Freescale Semiconductor, Inc. 2006 Freescale Confidential Proprietary • 39

	1 Introduction
	1.1 Purpose
	Scope
	Audience Description
	References
	1.4.1 Standards
	1.4.2 Freescale Multimedia References

	1.5 Definitions, Acronyms, and Abbreviations
	Document Location
	2 API Description
	2.1 Data Structures
	2.1.1 sAVCDecoderConfig
	2.1.2 sAVCDMemAllocInfo
	2.1.3 sAVCDMemBlock
	2.1.4 sAVCDYCbCrStruct
	2.1.5 sAVCDConfigInfo
	2.1.6 Input buffer interface
	2.1.7 Pre-fetch NAL interface
	2.1.8 sAVCDNAL_FUNCs

	2.2 Enumerations and Typedefs
	2.2.1 Library API Return codes
	2.2.2 Alignment definitions
	2.2.3 Output format definitions
	2.2.4 Buffer getter
	2.2.5 Buffer Rejecter
	2.2.6 Buffer Manager
	2.2.7 Deblock Option
	2.2.8 Buffer Releaser
	2.2.9 Query Memory
	2.2.10 Query Physical Memory Address
	2.2.11 Initialization
	2.2.12 ReQuery Memory
	2.2.13 Register NAL pre-fetch callback functions
	2.2.14 Decode
	2.2.15 Output Frame
	2.2.16 Output Flush
	2.2.17 Free Decoder
	2.2.18 Set a Buffer Manager
	2.2.19 Set Deblock option
	2.2.20 Get Deblock option
	2.2.21 Callback type definitions
	2.2.22 Set Callback function
	2.2.23 Query decoder version

	3 Application Notes
	3.1 Interaction between library and application
	3.2 State Transitions during API calls
	3.3 Decode Flow in Applications Perspective

	4 Example Lib Usage
	5 Debug Logs
	5.1 Logger Functions

	6 Appendix
	6.1 Pre-fetch callback function implementation

